Алгебра

Биквадратное уравнение и методы и примеры его решения

Квадратное уравнение и решение полных и неполных квадратных управнений

Геометрическая прогрессия

Логарифм и его свойства. Примеры решения логарифмов

Корни и степени. Свойства корней n-ой степени. Таблица корней

Модуль числа

Формулы сокращенного умножения

Арифметическая прогрессия. Формула суммы арифметической прогрессии

Показательные уравнения: примеры и решения

Модуль числа

Впервые с модулем числа мы познакомились в шестом классе, где даётся такое определение: модулем числа называется расстояние (в единичных отрезках) от начала координат до точки . Это определение раскрывает геометрический смысл модуля.

Модуль действительного числа – это абсолютная величина этого числа.

Попросту говоря, при взятии модуля нужно отбросить от числа его знак.

Модуль числа a обозначается |a|. Обратите внимание: модуль числа всегда неотрицателен: |a|≥ 0.

|6| = 6, |-3| = 3, |-10,45| = 10,45

Определение модуля

Свойства модуля

1. Модули противоположных чисел равны
2. Квадрат модуля числа равен квадрату этого числа
3. Квадратный корень из квадрата числа есть модуль этого числа

4. Модуль числа есть число неотрицательное
5. Постоянный положительный множитель можно выносить за знак модуля ,
6. Если , то
7. Модуль произведения двух (и более) чисел равен произведению их модулей

Геометрический смысл модуля

Модуль числа – это расстояние от нуля до данного числа.

Например, |-5| = 5. То есть расстояние от точки -5 до нуля равно 5.

Рассмотрим простейшее уравнение |x| = 3. Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и -3. Значит, у уравнения |x| = 3 есть два решения: x = 3 и x = -3.

Пример 1.

|x – 3| = 4.

Это уравнение можно прочитать так: расстояние от точки до точки равно . С помощью графического метода можно определить, что уравнение имеет два решения: и .

Пример 2.

Решим неравенство: |x + 7| < 4.

Можно прочитать как: расстояние от точки до точки меньше четырёх. Ответ: (-11; -3).

Пример 3.

Решим неравенство: |10 – x| ≥ 7.

Расстояние от точки 10 до точки больше или равно семи. Ответ: (-∞; 3]υ [17, +∞)

График функции y = |x|

Для x≥ 0 имеем y = x. Для x < 0 имеем y = -x.

Решение уравнений и неравенств, содержащих модуль числа

При решении задач, содержаних модуль вещественного числа, основным приемом является раскрытие знака модуля в соответствии с его свойствами.

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению:

В некоторых случаях модуль раскрывается однозначно. Например: , так как выражение под знаком модуля неотрицательно при любых и . Или, так как выражением под модулем не положительно при любых .