Алгебра

Биквадратное уравнение и методы и примеры его решения

Квадратное уравнение

Геометрическая прогрессия

Логарифм и его свойства. Примеры решения логарифмов

Корни и степени. Свойства корней n-ой степени. Таблица корней

Модуль числа, его определение и геометрический смысл. Решение уравнений и неравенств, содержащих модуль числа

Формулы сокращенного умножения

Арифметическая прогрессия. Формула суммы арифметической прогрессии

Показательные уравнения: примеры и решения

Определение квадратного уравнения

Квадратное уравнение – уравнение вида ax2 + bx + c = 0, где a, b, c – некоторые числа (a ≠ 0), x – неизвестное.

Числа называются коэффициентами квадратного уравнения.

  • называется первым коэффициентом;
  • называется вторым коэффициентом;
  • – свободным членом.

Приведенное квадратное уравнение – уравнение вида , первый коэффициент которого равен единице ().

Если в квадратном уравнении коэффициенты и не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение . Если один из коэффициентов или равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, .

Значение неизвестного , при котором квадратное уравнение обращается в верное числовое равенство, называется корнем этого уравнения. Например, значение является корнем квадратного уравнения , потому что или – это верное числовое равенство.

Решить квадратное уравнение – это значит найти множество его корней.

Решение неполных квадратных уравнений

ax2 + bx = 0, a≠0, b≠0

Пусть неполное квадратное уравнение имеет вид , где a ≠ 0; b≠ 0. В левой части этого уравнения есть общий множитель .

1. Вынесем общий множитель за скобки.

Мы получим . Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем или . Таким образом, данное уравнение эквивалентно двум уравнениям:

2. Решаем получившуюся систему уравнений.

Решив эту систему, мы получим и . Следовательно, данное квадратное уравнение имеет два корня и .

Пример 1.

Разложим левую часть уравнения на множители и найдем корни:

Ответ: 0; 4.

ax2 + c = 0, a≠0, с≠0

Для решения данного неполного квадратного уравнения выразим .

При решении последнего уравнения возможны два случая:

если , то получаем два корня:

если , то уравнение во множестве действительных числе не имеет решений.

Пример 2.

Таким образом, данное квадратное уравнение имеет два корня и

ax2 = 0, a≠0

Разделим обе части уравнения на , мы получим , . Таким образом, данное квадратное уравнение имеет один корень . В этому случае говорят, что квадратное уравнение имеет двукратный корень .

Решение полного квадратного уравнения

Найдем решение полного квадратного уравнения ax2 + bx + c = 0.

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения называется выражение b2 – 4ac.

При решении уравнения с помощью дискриминанта возможны три случая:

1. D > 0. Тогда корни уравнения равны:

2. D = 0. В данном случае решение даёт два двукратных корня:

3. D < 0. В этом случае уравнение не имеет решения.

Теорема Виета

Теорема Виета – сумма корней приведенного квадратного уравнения x2 + px + q = 0 равна -p, а произведение корней равно q.

Обратная теорема – если сумма двух чисел x1 и x2 равна p, а произведение этих числе равно q, то числа x1 и x2 являются корнями приведенного квадратного уравнения x2 + px + q = 0.

Разложение квадратного трехчлена на множители

Квадратный трехчлен – многочлен вида ax2 + bx + c = 0, где x – переменная, a,b,c – некоторые числа.

Значения переменной , которые обращают квадратный трехчлен в нуль, называются корнями трехчлена. Следовательно, корни трехчлена – это корни квадратного уравнения .

Теорема. Если квадратное уравнение имеет корни , то его можно записать в виде: x2 + bx + c = a (x – x1)(x – x2).

Пример 3.

Разложим на множители квадратный трехчлен:

Сначала решим квадратное уравнение:

Получим: и

Теперь можно записать разложение данного квадратного трехчлена на множители: