Самым распространенным видом средней является средняя арифметическая.

Средняя арифметическая простая

Простая среднеарифметическая величина представляет собой среднее слагаемое, при определении которого общий объем данного признака в совокупности данных поровну распределяется между всеми единицами, входящими в данную совокупность. Так, среднегодовая выработка продукции на одного работающего — это такая величина объема продукции, которая приходилась бы на каждого работника, если бы весь объем выпущенной продукции в одинаковой степени распределялся между всеми сотрудниками организации. Среднеарифметическая простая величина исчисляется по формуле:

Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб.

Найти среднюю заработную плату
Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб.

Средняя арифметическая взвешенная

Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции.

Представим это в виде следующей формулы:

  • \(x_i\) — цена за единицу продукции;
  • \(w_i\) — количество (объем) продукции;

Взвешенная средняя арифметическая — равна отношению (суммы произведений значения признака к частоте повторения данного признака) к (сумме частот всех признаков).Используется, когда варианты исследуемой совокупности встречаются неодинаковое количество раз.

Пример 2. Найти среднюю заработную плату рабочих цеха за месяц

Заработная плата одного рабочего
тыс.руб; X
Число рабочих
F
3,2 20
3,3 35
3,4 14
4,0 6
Итого: 75

Средняя заработная плата может быть получена путем деления общей суммы заработной платы на общее число рабочих:

Ответ: 3,35 тыс.руб.

Средняя арифметическая для интервального ряда

При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.

Средние, вычисляемые из интервальных рядов являются приближенными.

Пример 3. Определить средний возраст студентов вечернего отделения.

Возраст в годах
!!х??
Число студентов
\(f\)
Среднее значение интервала
\(x'\)
Произведение середины интервала (возраст)
на число студентов \(x' * f\)
до 20 65 (18 + 20) / 2 =19
18 в данном случае граница нижнего интервала. Вычисляется как 20 — (22-20)
1235
20 — 22 125 (20 + 22) / 2 = 21 2625
22 — 26 190 (22 + 26) / 2 = 24 4560
26 — 30 80 (26 + 30) / 2 = 28 2240
30 и более 40 (30 + 34) / 2 = 32 1280
Итого 500 11940

Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.

При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):

Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.

2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:

3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:

4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины \(a\), т.е:

5. Если все варианты ряда уменьшить или увеличить на одно и то же число \(a\), то средняя уменьшится на это же число \(a\):

6.Если все варианты ряда уменьшить или увеличить в \(A\) раз, то средняя также уменьшится или увеличится в \(A\)раз:

7.Если все частоты (веса) увеличить или уменьшить в \(d\)раз, то средняя арифметическая не изменится:

0.036 сек.