По мере того, как человечество с упрямством, достойным лучшего применения, превращает лицо Земли в сплошной антропогенный ландшафт, всё большее практическое значение приобретает оценка продуктивности различных экосистем. Человек научился получать энергию для своих производственных и бытовых нужд самыми различными способами, но энергию для собственного питания он может получать только через фотосинтез.

В пищевой цепи человека в основании почти всегда оказываются продуценты, преобразующие энергию Солнца в энергию биомассы органического вещества. Ибо это как раз та энергия, которую впоследствии могут использовать консументы и, в частности, человек. Одновременно те же самые продуценты производят необходимый для дыхания кислород и поглощают углекислый газ, причём скорость газообмена продуцентов прямо пропорциональна их биопродуктивности. Следовательно, в обобщенном виде вопрос об эффективности экосистем формулируется просто: какую энергию может запасти растительность в виде биомассы органического вещества? На верхнем рис. 1 приведены значения удельной (на 1 м2) продуктивности основных типов экосистем. Из этой диаграммы видно, что сельскохозяйственные угодья, создаваемые человеком, отнюдь не самые продуктивные экосистемы. Наивысшую удельную продуктивность дают болотистые экосистемы — влажные тропические джунгли, эстуарии и лиманы рек и обычные болота умеренных широт. На первый взгляд, они производят бесполезную для человека биомассу, но именно эти экосистемы очищают воздух и стабилизируют состав атмосферы, очищают воду и служат резервуарами для рек и почвенных вод и, наконец, являются местами размножения для огромного числа рыб и других обитателей вод, используемых в пищу человеком. Занимая 10 % площади суши, они создают 40 % производимой на суше биомассы. И это без каких-либо усилий со стороны человека! Именно поэтому уничтожение и «окультуривание» этих экосистем есть не только «убийство курицы, несушей золотые яйца», но и может оказаться самоубийством для человечества. Если обратиться к нижней диаграмме рис. 1, то можно видеть, что вклад пустынь и сухих степей в продуктивность биосферы ничтожен, хотя они уже занимают около четверти поверхности суши и благодаря антропогенному вмешательству имеют тенденцию к быстрому росту. В долгосрочной перспективе борьба с опустыниванием и эрозией почв, то есть превращение малопродуктивных экосистем в продуктивные, — вот разумный путь для антропогенных изменений в биосфере.

Удельная биопродуктивность открытого океана почти столь же низка, как у полупустынь, а его огромная суммарная продуктивность объясняется тем, что он занимает более 50 % поверхности Земли, вдвое превосходя всю площадь суши. Попытки использовать открытый океан в качестве серьёзного источника продуктов питания в ближайшее время вряд ли могут быть экономически оправданы именно в силу его низкой удельной продуктивности. Однако роль открытого океана в стабилизации условий жизни на Земле столь велика, что охрана его от загрязнения, особенно нефтепродуктами, совершенно необходима.

Рис. 1. Биопродуктивность экосистем как энергия, накопленная продуцентами в процессе фотосинтеза. Мировое производство электроэнергии составляет около 10 Экал/год, а всего человечество потребляет 50-100 Экал/год; 1 Экал (эксакалория) = 1 миллион миллиардов ккал = К)18 кал

Нельзя недооценивать и вклад лесов умеренного пояса и тайги в жизнеспособность биосферы. Особенно существенна их относительная устойчивость к антропогенным воздействиям по сравнению с влажными тропическими джунглями.

Тот факт, что удельная продуктивность сельскохозяйственных угодий до сих пор в среднем намного ниже, чем у многих природных экосистем, показывает, что возможности роста производства продуктов питания на существующих площадях ещё далеко не исчерпаны. Пример — заливные рисовые плантации, в сущности — антропогенные болотные экосистемы, с их огромными урожаями, получаемыми при современной агротехнике.

Биологическая продуктивность экосистем

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах — эквивалентном числе джоулей.

Валовая первичная продукция — количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание).

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений. Чистая первичная продукция — энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов — вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

Гетеротрофы, включаясь в трофические цепи, живут за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению обшей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т.д. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

Экосистемы также различаются по относительной скорости создания и расходования как первичной, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правша пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило обычно иллюстрируют в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит оттого, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий.

Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5%. В сообществах с преобладанием травянистых форм скорость воспроизводства биомассы гораздо выше. Отношение первичной продукции к биомассе растений определяет те масштабы потребления растительной массы, которые возможны в сообществе без изменения его продуктивности.

Для океана правило пирамиды биомасс не действует (пирамида имеет перевернутый вид).

Все три правила пирамид — продукции, биомассы и чисел — отражают, в конечном счете, энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер. Пирамида чисел отражает численность отдельных организмов (рис. 2) или, например, численность населения по возрастным группам.

Рис. 2. Упрощенная пирамида численности отдельных организмов