
Расчет освещенности производственного помещения
Grandars Безопасность жизнедеятельности Основы Безопасности жизнедеятельностиХарактеристики освещения: световой поток
Свет — естественное условие жизни человека, сохранения его здоровья. Сохранение зрения человека, состояние его ЦНС и безопасность на производстве, производительность труда и качество выпускаемой продукции в значительной мере зависят от освещения.
Свет представляет собой видимые глазом электромагнитные волны оптического диапазона длиной 380-760 нм, воспринимаемые сетчатой оболочкой зрительного анализатора.
С точки зрения гигиены труда основной светотехнической характеристикой является освещенность (E), которая представляет собой распределение светового потока (Ф) на поверхности площадью (S) и может быть выражена формулой Е = Ф/S.
За единицу освещенности принят люкс (лк) — освещенность поверхности площадью 1 м2 при световом потоке падающего на нее излучения, равном 1 лм.
Световой поток (Ф) — мощность лучистой энергии, оцениваемая по производимому ею зрительному ощущению, измеряется в люменах (лм).
Единица светового потока -люмен (лм) — световой поток, излучаемый точечным источником с телесным углом в 1 стерадиан при силе света, равной 1 канделе.
- Стерадиан — телесный угол с вершиной в центре сферы, вырезающий из поверхности сферы площадь, равную площади квадрата со стороной, длина которой равна радиусу сферы.
- Сила света (I) определяется как отношение светового потока (Ф), исходящего от источника и распространяющегося равномерно внутри элементарного телесного угла (d), к величине этого угла: I = Ф/d.
- Кандела — сила света, испускаемого с площади 1/600 000 м2 сечения полного излучателя в перпендикулярном направлении при температуре излучателя, равной температуре затвердевания платины при давлении 101 325 Па.
В физиологии зрительного восприятия важное значение придается не падающему потоку, а уровню яркости освещаемых производственных и других объектов. Под яркостью понимают характеристику светящихся тел, равную отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению. Яркость измеряется в нитах (нт). Яркость освещенных поверхностей зависит от их световых свойств, степени освещенности и угла, под которым поверхность рассматривается.
Световой поток, падающий на поверхность, частично отражается, поглощается или пропускается сквозь освещаемое тело. Поэтому световые свойства освещаемой поверхности характеризуются также следующими коэффициентами:
- коэффициент отражения — отношение отраженного телом светового потока к падающему;
- коэффициент пропускания — отношение светового потока, прошедшего через среду, к падающему;
- коэффициент поглощения — отношение поглощенного телом светового потока к падающему.
Гигиенические требования, отражающие качество производственного освещения:
- равномерное распределение яркостей в поле зрения и ограничение теней;
- ограничение прямой и отраженной блесткости;
- ограничение или устранение колебаний светового потока.
Равномерное распределение яркости в поле зрения имеет важное значение для поддержания работоспособности человека. Если в поле зрения постоянно находятся поверхности, значительно различающиеся по яркости (освещенности), то при переводе взгляда с ярко- на слабоосвещенную поверхность глаз вынужден переадаптироваться. Частая переадаптация ведет к развитию утомления зрения и затрудняет выполнение производственных операций.
Степень неравномерности освещения определяется коэффициентом неравномерности — отношением максимальной освещенности к минимальной. Чем выше точность работ, тем меньше должен быть коэффициент неравномерности.
Расчет искусственного освещения
Метод светового потока
Основным методом расчета общего равномерного освещения при горизонтальной рабочей поверхности является метод светового потока (коэффициента использования). Необходимый световой поток Фл (лм) от одной лампы накаливания или группы ламп светильника при люминесцентных лампах рассчитывают по формуле (1)
Ен — нормированная минимально-допустимая освещенность (лк), которая определяется нормативом (см. табл. 1);
S — площадь освещаемого помещения (м2);
z — коэффициент неравномерности освещения, который зависит от типа ламп (для ламп накаливания и дуговых ртутных ламп — 1,15, для люминесцентных ламп — 1,1);
к — коэффициент запаса, учитывающий запыление светильников и снижение светоотдачи в процессе эксплуатации, зависящий от вида технологического процесса, выполняемою в помещении и рекомендуемый в нормативах СНиП 23-05-95 (обычно к = 1,3... 1,8);
Nc — число светильников в помещении;
γ — коэффициент затенения, который вводится в расчет только при наличии крупногабаритного оборудования, затеняющего рабочее пространство;
η — коэффициент использования светового потока ламп, учитывающий долю общего светового потока, приходящуюся на расчетную плоскость, и зависящий от типа светильника, коэффициента отражения потолка рп и стен рс, высоты подвеса светильников, размеров помещения, определяемых индексом i помещения.
Индекс помещения определяется по формуле
А и В — длина и ширина помещения, м;
Нс — высота подвеса светильников над рабочей поверхностью.
Коэффициент использования светового потока ламп η определяют по таблицам, приводимым в СНиП 23-05-95 в зависимости от типа светильника, рп, рс и индекса i.
По полученному в результате расчета по формуле (1) световому потоку выбирают ближайшую стандартную лампу и определяют ее необходимую мощность. Умножив электрическую мощность лампы на количество светильников Nc, можно определить электрическую мощность всего освещения помещения.
При выборе типа лампы допускается отклонение от расчетного светового потока лампы Фл до -10 % и +20 %. Если такую лампу не удалось подобрать, выбирают другую схему расположения светильников, их тип и повторяют расчет.
Расчет освещения от светильников с люминесцентными лампами целесообразно выполнять, предварительно задавшись типом, электрической мощностью и величиной светового потока ламп. С использованием этих данных необходимое число светильников определяют по формуле
Np — число принятых рядов светильников.
Точечный метод
Для проверочного расчета общего локализованного и комбинированного освещения, освещения наклонных и вертикальных поверхностей и для проверки расчета равномерного общего освещения горизонтальных поверхностей, когда отраженным световым потоком можно пренебречь, применяют точечный метод.
В основу точечного метода положена формула (расчетная схема изображена на рис. 1):
Iа — сила света в направлении от источника света к расчетной точке A рабочей поверхности, кд (определяется по светотехническим характеристикам источника света и светильника);
H — высота подвеса светильника над рабочей поверхностью, м;
у — угол между нормалью к рабочей поверхности и направлением светового потока от источника.
При необходимости расчета освещенности в точке, создаваемой несколькими светильниками, подсчитывают освещенность от каждого из них, а затем полученные значения складывают. Должно выполняться условие Ен < Е∑
Рис. 1. Схема расчета точечным методом
Расчет естественного освещения
Целью расчета естественного освещения является аналитическое определение значения КЕО (Коэффициент естественного освещения). Это необходимо для правильной расстановки оборудования, определения положения рабочих мест. Расчет производят также для определения достаточности размеров оконных проемов для обеспечения минимально допустимого значения КЕО. Для расчета естественной освещенности могут применяться аналитические методы, но на практике определение значения КЕО в расчетной точке помещения осуществляют с использованием графиков и номограмм.
При использовании графических зависимостей расчет КЕО при боковом освещении осуществляют в следующей последовательности:
- определяют непосредственным измерением или по строительным чертежам площадь Sc (м2) световых проемов, площадь Sп (м2) освещаемой части пола помещения и находят их отношение Sc / Sn;
- определяют глубину hп (м) помещения от световых проемов до расчетной точки, высоту hо (м) верхней грани световых проемов (окон) над уровнем рабочей поверхности и находят их отношение hп / hо;
- с использованием графика, изображенного на рис. 2, по значениям отношения Sc / Sп и hn / hо находят значение КЕО.
Для определения размеров оконных проемов, обеспечивающих требуемое по условиям трудовой деятельности значение КЕО, можно использовать график, изображенный на рис. 3. По графику на пересечении вычисленного значения hп/ hо (точка А) и необходимой величины КЕО (точка Б) определяют требуемое значение Sc / Sп (точка В), выраженное в процентах. Далее вычисляют требуемую площадь световых проемов Sc.
Рис. 2. Определение КЕО по значению площади светового проема и освещаемой площади пола
Рис. 3. Определение КЕО по глубине помещения и высоте световых проемов
Графики, приведенные на рис. 2, 3, построены для окон с двумя слоями листового оконного стекла в спаренных металлических открывающихся переплетах. Если проектом предусмотрены другие типы заполнителей световых проемов, то найденное по графику рис. 2 значение КЕО необходимо умножить на поправочный коэффициент kп, значения которого для наиболее распространенных заполнителей световых проемов представлены в табл. 1.
Таблица 1. Значения поправочного коэффициента kп
Тип остекления |
kп |
Однослойное остекление в стальных одинарных глухих переплетах |
1,26 |
То же в открывающихся переплетах |
1,05 |
Один слой оконного стекла в деревянных открывающихся переплетах |
1,05 |
Два слоя оконного стекла в стальных открывающихся переплетах |
0,75 |
Пустотелые стеклянные блоки |
0,70 |
Для определения значения КЕО может также применяться графический метод А. М. Данилюка, пригодный при легкой сплошной освещенности, т. е. при диффузном распространении светового потока. Метол сводится к тому, что полусферу небосвода разбивают на К) 000 участков равной световой активности и подсчитывают, какое число этих участков видно из расчетной точки помещения через световой проем, т. е. графически определяют, какая часть светового потока от всей небесной полусферы непосредственно попадает в расчетную точку.
Число видимых через световой проем участков небосклона находят при помощи двух графиков (рис. 4), представляющих собой пучок проекций лучей, соединяющих центр полусферы небосвода с участками равной световой активности по высоте (график I) и по ширине (график II) светового проема.
Для расчета по методу А. М. Данилюка на листе бумаги выполняют разрезы помещения — поперечный разрез и в плане — в масштабе, соответствующем масштабу графиков. Затем накладывают график I на поперечный разрез так, чтобы основание графика совпадало со следом расчетной плоскости рабочей поверхности, а полюс графика с расчетной точкой М, и определяют число n1, лучей, проходящих через контур светового проема. График II накладывают на план помещения так, чтобы его основание было параллельно плоскости расположения светового проема и было расположено от нее на расстоянии, равном расстоянию от расчетной точки до середины светового проема повысоте на поперечном разрезе.
Рис. 4. Схема дли расчета естественного освещения но методу А. М. Данилюка
При этом полюс графика должен находиться на пересечении его основания с горизонтальной линией, проведенной на плане помещения через расчетную точку. Подсчитывают число n2 лучей, проходящих через контур светового проема по ширине. Значение КЕО в расчетной точке (в %) помещения определяют как
КЕО = 0,01 n1,n2.
См.также: Нормы освещения
Параметры и коэффициенты освещенности
Существуют два источника света — Солнце и искусственные источники, созданные человеком. Основные искусственные источники света, применяемые ныне, — электрические источники, прежде всего лампы накаливания и газоразрядные лампы. Источник света излучает энергию в виде электромагнитных волн, имеющих различную длину волны. Человек воспринимает электромагнитные волны как свет только в диапазоне от 0,38 до 0,76 мкм.
Освещение и световая среда характеризуется следующими параметрами.
Световой поток (Ф) — часть электромагнитной энергии, которая излучается источником в видимом диапазоне. Поскольку световой поток — это не только физическая, но и физиологическая величина, т. к. характеризует зрительное восприятие, для него введена специальная единица измерения люмен (лм).
Сила света (I). Так как источник света может излучать свет по различным направлениям неравномерно, вводится понятие силы света как отношения величины светового потока, распространяющегося от источника света в некотором телесном угле W (измеряется в стерадианах), к величине этого телесного угла
I = Ф/W.
Сила света измеряется в канделах (кд).
Солнце и искусственные источники света — это первичные источники светового потока, т. с. источники, в которых генерируется электромагнитная энергия. Однако существуют вторичные источники — поверхности объектов, от которых свет отражается.
Коэффициентом отражения (r) называется доля светового потока (Фпад), падающего на поверхность, которая отражается от нее:
r = Фотр / Фпад
Величина же светового потока (Фотр), отраженного поверхностью предмета и распространяющегося в некотором телесном угле (W), отнесенная к величине этого угла и площади (S) отражающей поверхности, называется яркостью (L) объекта. По сути это сила света, излучаемая поверхностью, отнесенная к площади этой поверхности:
L = Фотр / (W * S); L = I/S.
Измеряется яркость в кд/м2.
Чем больше яркость объекта, тем больший световой поток от него поступает в глаз и тем сильнее сигнал, поступающий от глаза в зрительный центр. Таким образом, казалось бы, чем больше яркость, тем лучше человек видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую по величине яркость, то интенсивность засветки участков сетчатки световым потоком, поступающим от фона и объекта, одинакова (или слабо различается), величина поступающих в мозг сигналов одинакова, и объект на фоне становится неразличимым.
Для лучшей видимости объекта необходимо, чтобы яркости объекта и фона различались. Разница между яркостями объекта (LО) и фона (Lф), отнесенная к яркости фона, называется контрастом:
К = | Lо — Lф | / Lф.
Величина контраста берется по модулю.
Если объект резко выделяется на фоне (например, черная линия на белом листе) контраст считается большим, при среднем контрасте объект и фон заметно различаются по яркости, при малом контрасте объект слабо заметен на фоне (например, линия бледно-желтого цвета на белом листе). При К < 0,2 контраст считается малым, при К = 0,2...0,5 контраст средний, а при К > 0,5 — большим.
Величина яркости объекта тем больше, чем больше коэффициент отражения и падающий на поверхность световой поток.
Для характеристики интенсивности падающего на поверхность от источника света светового потока введена специальная величина, получившая название освещенности.
Освещенность — это отношение падающего на поверхность светового потока (Фпад) к величине площади этой поверхности (S)
E = Фпад /S.
Измеряется освещенность в люксах (лк), 1 лк = 1 л м/м2.
Таким образом, чем больше освещенность и контраст, тем лучше видно объект, а следовательно, меньше нагрузка на зрение. Следует обратить внимание на то, что слишком большая яркость отрицательно воздействует на зрение. Как правило, большая яркость связана не со слишком большой освещенностью, а с очень большими коэффициентами отражения (например, зеркальным отражением). При большой яркости имеет место очень интенсивная засветка сетчатки, и разлагающийся светочувствительный материал не успевает восстанавливаться (регенерироваться) — возникает явление ослепленности. Такое явление, например, возникает, если смотреть на раскаленную вольфрамовую нить лампы накаливания, обладающей большой яркостью.
Одной из характеристик зрительной работы является фон — поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее свет. Отражательная способность определяется коэффициентом отражения г. В зависимости от цвета и фактуры поверхности значения коэффициента отражения изменяются в широких пределах — 0,02...0,95. Фон считается светлым при r>0,4, средним при значениях r в диапазоне 0,2...0,4 и темным при r<0,2.
Чтобы проиллюстрировать влияние контраста на зрительное восприятие, положите черный волос на темный лист бумаги, а белый — на белый лист бумаги, затем наоборот. Вы заметите, что во втором случае оба волоса видно значительно лучше, т. к. больше контраст.
Чтобы проиллюстрировать влияние освещенности на зрительное восприятие, проведите тот же опыт при различных освещенностях в помещении. Лучшего результата можно достичь в пасмурную погоду при недостаточной естественной освещенности в помещении. Рассмотрите черный волос на темном листе при выключенном и включенном освещении. При включенном освещении волос лучше виден. Белый волос на темном фоне виден даже при выключенном искусственном освещении.
Важной характеристикой, от которой зависит требуемая освещенность на рабочем месте, является размер объекта различения.
Размер объекта различения — это минимальный размер наблюдаемого объекта (предмета), отдельной его части или дефекта, которые необходимо различать при выполнении работы. Например, при написании или чтении, чтобы видеть текст, необходимо различать толщину линии буквы — толщина линии и будет размером объекта различения при написании или чтении текста. Размер объекта различения определяет характеристику работы и ее разряд. Например, при размере объекта менее 0,15 мм разряд работы наивысшей точности (I разряд), при размере 0,15...0,3 мм — разряд очень высокой точности (II разряд); от 0,3 до 0,5 мм — разряд высокой точности (III разряд) и т. д. При размере более 5 мм — грубая работа.
Очевидно, чем меньше размер объекта различения (выше разряд работы) и меньше контраст объекта различения с фоном, на котором выполняется работа, тем больше требуется освещенность рабочего места, и наоборот.
