Источники электромагнитных полей и излучений
Grandars.ru » Безопасность жизнедеятельности » Основы Безопасности жизнедеятельности »

Источники электромагнитных полей и излучений

Источники электромагнитных полей и излучений

Электромагнитными полями пронизано все окружающее пространство.

Существуют естественные и техногенные источники электромагнитных полей.

Естественные источники электромагнитного поля:

  • атмосферное электричество;
  • радиоизлучение Солнца и галактик (реликтовое излучение, равномерно распространенное во Вселенной);
  • электрическое и магнитное поля Земли.

Источниками техногенных электромагнитных полей являются различная передающая аппаратура, коммутаторы, разделительные высокочастотные фильтры, антенные системы, промышленные установки, снабженные высокочастотными (ВЧ), ультравысокочастотными (УВЧ) и сверхвысокочастотными (СВЧ) генераторами.

Источники электромагнитных полей на производстве

К источникам ЭМП на производстве относятся две большие группы источников:

  • изделия, которые специально созданы для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические аппараты, различные системы радиосвязи, технологические установки в промышленности. Электромагнитные поля широко используются в промышленности для нагрева, например в таких технологических процессах, как закалка и отпуск стали, накатка твердых сплавов на режущий инструмент, плавка металлов и полупроводников и т. д.;
  • устройства, не предназначенные для излучения электромагнитной энергии в пространство, но в которых при работе протекает электрический ток и при этом происходит паразитное излучение электромагнитных волн. Это системы передачи и распределения электроэнергии (линии электропередачи — ЛЭП, трансформаторные и распределительные подстанции) и приборы, потребляющие электроэнергию (электродвигатели, электроплиты, электронагреватели, видеодисплейные терминалы, холодильники, телевизоры и т. п.).

Опасное воздействие на работающих могут оказывать:

  • ЭМП радиочастот (60 кГц — 300 ГГц),
  • электрические и магнитные поля промышленной частоты (50 Гц);
  • электростатические поля.

Источниками волн радиочастотного диапазона являются прежде всего станции радио- и телевещания. Классификация радиочастот дана в табл. 1. Эффект радиоволн во многом зависит от особенностей их распространения. На него влияют характер рельефа и покрова поверхности Земли, крупные предметы и строения, расположенные на пути, и т.п. Лесные массивы и неровности рельефа поглощают и рассеивают радиоволны.

Таблица 1. Радиочастотный диапазон

Наименование волн

Частоты, МГц

Длина волн, м

Длинные волны (ДВ)

0,03-0,3

10000-1000

Средние волны (СВ)

0.3-3

1000-100

Короткие волны (КВ)

3-30

100-10

Ультракороткие волны (УКВ)

30-300

10-1

Сверхвысокочастотные волны (СВЧ)

300-30 000

1-0,01

Чрезвычайно высокочастотные волны (ЧВЧ)

30 000-300 000

0,01-0,001

Электростатические поля создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов). В промышленности электростатические поля широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

Источники электрических полей

Любое электромагнитное явление, рассматриваемое в целом, характеризуется двумя сторонами — электрической и магнитной, между которыми существует тесная связь. Электромагнитное поле также имеет всегда две взаимосвязанные стороны — электрическое поле и магнитное поле.

Источником электрических полей промышленной частоты являются токоведущие части действующих электроустановок (линии электропередачи, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсаторного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем, что выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, болях в области сердца, изменении артериального давления и пульса.

Для электрического поля промышленной частоты в соответствии с ГОСТ 12.1.002-84 предельно допустимый уровень напряженности электрического поля, пребывание в котором не допускается без применения специальных средств защиты в течение всего рабочего дня, равен 5 кВ/м. В интервале свыше 5 кВ/м до 20 кВ/м включительно допустимое время пребывания Т (ч) определяется по формуле Т = 50/Е — 2, где Е — напряженность воздействующего поля в контролируемой зоне, кВ/м. При напряженности поля свыше 20 кВ/м до 25 кВ/м время пребывания персонала в поле не должно превышать 10 мин. Предельно допустимое значение напряженности электрического поля устанавливается равным 25 кВ/м.

При необходимости определения предельно допустимой напряженности электрического поля при заданном времени пребывания в нем уровень напряженности в кВ/м вычисляется по формуле Е — 50/(Т + 2), где Т — время пребывания в электрическом поле, ч.

Основными видами средств коллективной защиты от воздействия электрического поля токов промышленной частоты являются экранирующие устройства — составная часть электрической установки, предназначенная для защиты персонала в открытых распределительных устройствах и на воздушных линиях электропередачи (рис. 1).

Экранирующее устройство необходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством работ. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегородок из металлических канатов. прутков, сеток. Экранирующие устройства должны иметь антикоррозионное покрытие и заземлены.

Рис. 1. Экранирующий навес над проходом в здание

Для защиты от воздействия электрического поля токов промышленной частоты используются также экранирующие костюмы, которые изготавливаются из специальной ткани с металлизированными нитями.

Источники электростатических полей

На предприятиях широко используют и получают вещества и материалы, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества.

Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электрические заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

Процесс возникновения и накопления электрических зарядов в веществах называют электризацией.

Явление статической электризации наблюдается в следующих основных случаях:

  • в потоке и при разбрызгивании жидкостей;
  • в струе газа или пара;
  • при соприкосновении и последующем удалении двух твердых
  • разнородных тел (контактная электризация).

Разряд статического электричества возникает в том случае, когда напряженность электростатического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха пробивное напряжение составляет 30 кВ/см.

У людей, работающих в зоне воздействия электростатического поля, отмечаются разнообразные расстройства: раздражительность, головная боль, нарушение сна, снижение аппетита и др.

Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (ГН 1757-77).

Эти нормативные правовые акты распространяются на электростатические поля, создаваемые при эксплуатации электроустановок высокого напряжения постоянного тока и электризации диэлектрических материалов, и устанавливают допустимые уровни напряженности электростатических полей на рабочих местах персонала, а также общие требования к проведению контроля и средствам защиты.

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей — 60 кВ/м в течение 1 ч.

При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется.

В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты зависит от конкретного уровня напряженности на рабочем месте.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия. Основные меры защиты:

  • предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций, на которых могут появиться заряды (аппараты, резервуары, трубопроводы, транспортеры, сливоналивные устройства, эстакады и т.п.);
  • уменьшение электрического сопротивления перерабатываемых веществ;
  • применение нейтрализаторов статического электричества, создающих вблизи наэлектризованных поверхностей положительные и отрицательные ионы. Ионы, несущие заряд, противоположный заряду поверхности, притягиваются к ней, и нейтрализуют заряд. По принципу действия нейтрализаторы разделяют на следующие типы: коронного разряда (индукционные и высоковольтные), радиоизотопные, действие которых основано на ионизации воздуха альфа-излучением плутония-239 и бета-излучением прометия-147, аэродинамические, представляющие собой камеру-расширитель, в которой с помощью ионизирующего излучения или коронного разряда генерируются ионы, которые затем воздушным потоком подаются к месту образования зарядов статического электричества;
  • снижение интенсивности зарядов статического электричества. Достигается соответствующим подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения, очисткой горючих газов и жидкостей от примесей;
  • отвод зарядов статического электричества, накапливающихся на людях. Достигается обеспечением работающих токопроводящей обувью и антистатическими халатами, устройством электропроводящих полов или заземленных зон, помостов и рабочих площадок. заземлением ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов.

Источники магнитного поля

Магнитные поля (МП) промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Чем больше сила тока, тем выше интенсивность магнитного поля.

Магнитные поля могут быть постоянными, импульсными, инфранизкочастотными (с частотой до 50 Гц), переменными. Действие МП может быть непрерывным и прерывистым.

Степень воздействия МП зависит от максимальной напряженности его в рабочем пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения рабочего места по отношению к МП и режима труда. Каких-либо субъективных воздействий постоянные МП не вызывают. При действии переменных МП наблюдаются характерные зрительные ощущения, так называемые фосфены, которые исчезают в момент прекращения воздействия.

При постоянной работе в условиях воздействия МП, превышающих предельно допустимые уровни, развиваются нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения состава крови. При преимущественно локапьном воздействии могут возникать вегетативные и трофические нарушения, как правило, в области тела, находящегося под непосредственным воздействием МП (чаще всего рук). Они проявляются ощущением зуда, бледностью или синюшностыо кожных покровов, отечностью и уплотнением кожи, в некоторых случаях развивается гиперкератоз (ороговелость).

Напряженность МП на рабочем месте не должна превышать 8 кА/м. Напряженность МП линии электропередачи напряжением до 750 кВ обычно не превышает 20-25 А/м, что не представляет опасности для человека.

Источники электромагнитного излучения

Источниками электромагнитных излучений в широком диапазоне частот (сверх- и ифранизкочастотном, радиочастотном, инфракрасном, видимом, ультрафиолетовом, рентгеновском — табл. 2) являются мощные радиостанции, антенны, генераторы сверхвысоких частот, установки индукционного и диэлектрического нагрева, радары, лазеры, измерительные и контролирующие устройства, исследовательские установки, медицинские высокочастотные приборы и устройства, персональные электронно-вычислительные машины (ПЭВМ), видеодисплейные терминалы на электронно-лучевых трубках, используемые как в промышленности, научных исследованиях, так и в быту.

Источниками повышенной опасности с точки зрения электромагнитных излучений являются также микроволновые печи, телевизоры, мобильные и радиотелефоны.

Таблица 2. Спектр электромагнитных излучений

Низкочастотные излучения

Источниками низкочастотных излучений являются системы производства. передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропередачи), электросети жилых и административных зданий, транспорт, работающий на электроприводе, и его инфраструктура.

При длительном воздействии низкочастотного излучения могут появиться головные боли, изменение артериального давления, развиваться утомление, наблюдаться выпадение волос, ломкость ногтей, снижение массы тела, стойкое снижение работоспособности.

Для защиты от низкочастотного излучения экранируют либо источники излучения (рис. 2), либо зоны, где может находиться человек.

Рис. 2. Экранирование: а — индуктора; б — конденсатора

Источники радиочастотного излучения

Источником ЭМП радиочастот являются:

  • в диапазоне 60 кГц — 3 МГц — неэкранированные элементы оборудования для индукционной обработки металла (закачка, отжиг, плавка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радиосвязи и радиовещании;
  • в диапазоне 3 МГц — 300 МГц — неэкранированные элементы оборудования и приборов, применяемых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлектриков;
  • в диапазоне 300 МГц — 300 ГГц — неэкранированные элементы оборудования и приборов, применяемых в радиолокации, радиоастрономии, радиоспектроскопии, физиотерапии и т.п. Длительное воздействие радиоволн на различные системы организма человека вызывают разные последствия.

Наиболее характерными при воздействии радиоволн всех диапазонов являются отклонения в ЦНС и сердечно-сосудистой системе человека. Субъективные жалобы — частая головная боль, сонливость или бессонница, утомляемость, слабость, повышенная потливость, снижение памяти, рассеянность, головокружение, потемнение в глазах, беспричинное чувство тревоги, страха и др.