Под микроциркуляцией принято понимать совокупность взаимосвязанных процессов, включающих кровоток в сосудах микроциркуляторного русла и неразрывно связанные с ним обмен различными веществами крови и тканей и образование лимфы.

К микроциркуляторному сосудистому руслу относят терминальные артерии (ф < 100 мкм), артериолы, метартериолы, капилляры, венулы (рис. 1). Совокупность этих сосудов рассматривают как функциональную единицу сосудистой системы, на уровне которой кровь выполняет свою главную функцию — обслуживание метаболизма клеток.

Рис. 1. Схема микроциркуляторпого сосудистого русла

Микроциркуляция включает движение крови жидкости через кровеносные сосуды диаметром не более 2 мм. С помощью этой системы осуществляется движение жидкости в межтканевых пространствах и движение лимфы в начальных отделах лимфатического русла.

Характеристика микроциркуляции
  • Общее число капилляров в организме человека — около 40 млрд
  • Общая эффективная обменная поверхность капилляров — около 1000 м2
  • Плотность капилляров в различных органах варьирует на 1 мм3 ткани от 2500-3000 (миокард, головной мозг, печень, почки) до 300-400/мм3 в фазных единицах скелетных мышц, до 100/мм3 в тонических единицах и менее в костной, жировой и соединительной тканях
  • Обменный процесс в капиллярах главным образом происходит путем двухсторонней диффузии и фильтрации/реабсорбции

В состав микроциркуляционной системы входят: терминальные артериолы, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артериоловенулярные анастомозы.

Рис. Гидродинамические характеристики сосудистого русла

Обмен веществ через капиллярную стенку регулируется с помощью фильтрации, диффузии, абсорбции и пиноцитоза. Кислород, диоксид углерода, жирорастворимые вещества легко проходят через капиллярную стенку. Фильтрация — процесс выхода жидкости из капилляра в межклеточное пространство, а абсорбция — обратное поступление жидкости из межклеточного пространства в капилляр. Эти процессы осуществляются в результате разницы гидростатического давления крови в капилляре и интерстициальной жидкости, а также благодаря изменению онкотического давления плазмы крови и интерстициальной жидкости.

В состоянии покоя на артериальном конце капилляров гидростатическое давление крови достигает 30-35 мм рт. ст., а на венозном конце снижается до 10-15 мм рт. ст. В интерстициальной жидкости гидростатическое давление отрицательное и составляет -10 мм рт. ст. Разность гидростатического давления между двумя сторонами стенки капилляра способствует переходу воды из плазмы крови в интерстициальную жидкость. Онкотическое давление, создаваемое белками, в плазме крови составляет 25-30 мм рт. ст. В интерстициальной жидкости содержание белка меньше и онкотическое давление также ниже, чем в плазме крови. Это способствует передвижению жидкости из интерстициального пространства в просвет капилляра.

Диффузный механизм транс капиллярного обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Активный механизм обмена обеспечивается эндотелиальными клетками капилляров, которые с помощью транспортных систем в их мембранах переносят определенные вещества и ионы. Пиноцитозный механизм способствует транспорту через стенку капилляра крупных молекул и частиц клеток путем эндо- и экзопиноцитоза.

Регуляция капиллярного кровообращения происходит за счет влияния гормонов: вазопрессина, норадреналина, гистамина. Вазопрессин и норадреналин приводят к сужению просвета сосудов, а гистамин — к расширению. Сосудорасширяющим свойством обладают простагландины и лейкотриены.

Капилляры человека

Капилляры представляют собой тончайшие сосуды диаметром 5-7 мкм, длиной 0,5-1,1 мм. Эти сосуды пролегают в межклеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма.

Суммарная длина всех капилляров тела человека составляет около 100 000 км, т.е. нить, которой можно было бы трижды опоясать земной шар по экватору. Около 40% капилляров являются действующими капиллярами, т.е. заполненными кровью. Капилляры раскрываются и наполняются кровью во время ритмических мышечных сокращений. Капилляры соединяют артериолы с венулами.

Виды капилляров

По строению эндотелиальной стенки все капилляры условно подразделяются на три вида:

  • капилляры с непрерывной стенкой («закрытые»). Эндотелиальные клетки их тесно прилегают друг к другу, не оставляя зазоров между собой. Капилляры данного вида широко представлены в гладких и скелетных мышцах, миокарде, соединительной ткани, легких, центральной нервной системе. Проницаемость этих капилляров достаточно жестко контролируется;
  • капилляры с окошечками (фенестрами) или окончатые капилляры. Они способны пропускать вещества, диаметр молекул которых достаточно велик. Такие капилляры локализованы в почечных клубочках и слизистой кишечника;
  • капилляры с прерывистой стенкой, в которых между соседними эпителиальными клетками имеются щели. Через них свободно проходят крупные частицы, в том числе форменные элементы крови. Такие капилляры расположены в костном мозге, печени, селезенке.

Физиологическое значение капилляров состоит в том, что через их стенки осуществляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.

Скорость движения крови в капиллярах

Скорость кровотока в капиллярах невелика и составляет 0,5-1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина слоя крови (7-8 мкм) и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

Рис. Линейная, объемная скорость кровотока и площадь поперечного сечения в различных отделах сердечно-сосудистой системы (наименьшая линейная скорость в капиллярах — 0.01-0,05 см/с; время прохождения крови через капилляр средней длины (750 мкм) — 2,5 с)

В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть более густая, чем в белом.

Различают два вида функционирующих капилляров:

  • одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры);
  • другие представляют собой боковые ответвления от первых — они отходят от артериального конца магистральных капилляров и впадают в их венозный конец, образуя капиллярные сети.

Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других феноменах микроциркуляции.

Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает (феномен Крога).

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т.е. соотношение эритроцитов и плазмы.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в вены, минуя капилляры.

Артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этого является изменение капиллярного кровообращения в коже при повышении (свыше 35 °С) или понижении (ниже 15 °С) температуры окружающей среды. Анастомозы в коже открываются, и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.

Структурно-функциональной единицей кровотока в мелких сосудах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.

Сосудистый модуль состоит из артериолы, прекапилляров, капилляров, посткапилляров, венул, артериоловенулярных анастомозов и лимфатического сосуда (рис. 2).

Микроциркуляция объединяет в себе механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Рис. 2. Сосудистый модуль

Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000-9000 л крови. Через стенку капилляров профильтровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Закономерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Старлингом. Гидростатическое давление крови в капиллярах (Ргк) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капилляром русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и онкотическое давление тканевой жидкости (Рот).

На артериальном конце капилляра Ргк составляет 30-35 мм рт. ст., а на венозном — 15-20 мм рт. ст. Рок на всем протяжении остается постоянным и составляет 25 мм рт. ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный процесс, т.е. реабсорбция жидкости. Определенные коррективы вносит в этот процесс Рот, равное примерно 4,5 мм рт. ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная величина Ргт (минус 3 — минус 9 мм рт. ст.) (рис. 3).

Следовательно, объем жидкости, переходящей через стенку капилляра за 1 минуту (V), при коэффициенте фильтрации К равен

V=[(Ргк + Рот) — (Ргток)]*К.

На артериальном конце капилляра V положителен, здесь происходит фильтрация жидкости в ткань, а на венозном V отрицателен и жидкость реабсорбируется в кровь. Транспорт электролитов и низкомолекулярных веществ, например глюкозы, осуществляется вместе с водой.

Рис. 3. Обменные процессы в капиллярах

Капилляры различных органов отличаются по своей ультраструктуре, а следовательно, по способности пропускать в тканевую жидкость белки. Так, I л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г, в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.

Таким образом, устанавливается динамический баланс крови в сосудистой системе с межклеточной жидкостью.