Физиология

Химические и электрические синапсы

Grandars Медицина Физиология

Понятие и физиология химических и электрических синапсов

Синапс — это специализированная структура, обеспечивающая межклеточную передачу сигналов электрической и (или) химической природы.

С помощью синапсов передается информация от рецепторных клеток на дендриты чувствительных нейронов, с одной нервной клетки на другую, с нервной клетки на волокно скелетной мышцы, железистые и другие эффекторные клетки. Через синапсы могут оказываться возбуждающие или тормозные влияния на клетки, активироваться или подавляться их метаболизм и другие функции.

Термин «синапс» ввел И. Шеррингтон в 1897 г. В настоящее время синапсами называют специализированные функциональные контакты между возбудимыми клетками (нервными, мышечными, секреторными), служащие для передачи и преобразования нервных импульсов.

Строение синапса

Электронно-микроскопические исследования выявили, что синапсы имеют три основных элемента: пресинаптическую мембрану, постсинаптическую мембрану и синаптическую щель (рис. 1).

Передача информации через синапс может осуществляться химическим или электрическим путем. Смешанные синапсы сочетают химические и электрические механизмы передачи.

Рис. 1. Основные элементы синапса

Виды синапсов

По механизму передачи возбуждения синапсы подразделяют на электрические и химические.

Электрические синапсы образуются между клетками, формирующими между мембранами плотные щелевые контакты. Ширина щели составляет около 3 нм, и между контактирующими мембранами образуются общие ионные каналы с диаметром поры около 1-2 нм. Через эти каналы и осуществляется передача информации с помощью электрических ионных токов. Через каналы электрических синапсов клетки могут обмениваться также небольшими по размеру сигнальными молекулами органической природы. Названные вещества способны перемещаться в электрических синапсах с большой скоростью в обоих направлениях, и переносимая с их помощью информация также может передаваться в обоих направлениях (в отличие от химических синапсов).

Электрические синапсы имеются уже в эмбриональном мозге и остаются наряду с химическими синапсами в зрелой ЦНС позвоночных.

Ионные токи, перемещающиеся из пресинаптического нейрона в постсинаптический, вызывают на его мембране колебания разности потенциалов — постинаптический потенциал амплитудой около 1 мВ и могут вызвать генерацию на ней ПД. В свою очередь возникший ПД может вызвать обратный ток ионов через каналы щелевых контактов к пресинаптическому нейрону и становится источником модуляции разности потенциалов на его мембране. Нейрон может формировать щелевые контакты (электрические синапсы) с рядом других нейронов, поэтому практически одновременное протекание ионных токов между ними способствует синхронизации активности группы нервных клеток, связанных этими синапсами. Электрические синапсы чаще выявляются в областях мозга, в которых регистрируется высоко синхронизированная нейронная активность.

Как уже упоминалось ранее, ионные каналы щелевых контактов имеются не только между нервными, но и между глиальными клетками, между гладкими миоцитами, между кардиомиоцитами, между железистыми клетками.

Химические синапсы образуются специализированными структурами двух клеток в области их контакта (рис. 2). Одной из этих клеток, которую называют пресинаптической, обычно является нервная клетка, но ею может быть и специализированная чувствительная клетка иной природы (например, сенсоэпителиальная слуховая или вкусовая клетка, гломусные клетки аортального тельца). Пресинаптическая нервная клетка обычно формирует синапс на другой клетке с помощью мембраны нервного окончания (аксона). В этом случае окончание аксона называют пресинаптической, или аксонной, терминально.

Часть мембраны окончания, обращенную в сторону постсинаптической клетки, называют пресинаптической. Клетку, на которой формируется синаптический контакт, называют постсинаптической, а часть плазматической мембраны клетки, обращенную к пресинаптической мембране, — постсинаптической.

Узкое щелевидное пространство, разделяющее пресинаптическую и постсинаптическую мембраны, называют синаптической щелью (см. рис. 2.). Таким образом, для химических синапсов общими структурными элементами являются пресинаптическая часть (нервное окончание и пресинаптическая мембрана), синаптическая щель, постсинаптическая часть (постсинаптическая мембрана).

Рис. 2. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Химические синапсы могут образовываться между двумя нервными клетками с участием отростков и тела клетки. В зависимости от структур нейронов, образующих синаптическое соединение, синапсы делят на аксосоматические, аксоаксональные, аксодендритные, дендродендритные. Синапсы, располагающиеся в пределах ЦНС, называют центральными, а находящиеся вне ЦНС — периферическими. Периферические синапсы передают сигналы нервных волокон на эффекторные органы (мышечные волокна, железистые клетки).

Химические синапсы

Химический синапс — межклеточное образование, которое обеспечивает передачу сигнала с помощью химического посредника-медиатора.

Передача информации в химических синапсах осуществляется через синаптическую щель — область внеклеточного пространства шириной 10-50 нм, разделяющую пре- и постсинаптические мембраны клеток. В пресинаптическом окончании содержатся синаптические везикулы (рис. 3) — мембранные пузырьки диаметром около 50 нм, в каждом из которых заключено 1 • 104 — 5 • 104 молекул медиатора. Общее количество таких пузырьков в пресинаптических окончаниях составляет несколько тысяч. Цитоплазма синаптической бляшки содержит митохондрии, гладкий эндоплазматический ретикулум, микрофиламенты.

Синаптическая щель заполнена мукополисахаридом, «склеивающим» пре- и постсинаптическую мембраны.

Постсинаптическая мембрана содержит крупные белковые молекулы, выполняющие функции рецепторов, чувствительных к медиатору, а также многочисленные каналы и поры, через которые в пост- синаптический нейрон могут поступать ионы.

Рис. 3. Строение химического синапса

Характеристика химического синапса

  • Принцип «физиологического клапана»
  • При участии посредника-медиатора
  • Синаптическая задержка
  • Принцип Дейла
  • Трансформация ритма возбуждения
  • Синаптическое облегчение и депрессия
  • Утомляемость
  • Явление суммации, подчинение закону силы
  • Низкая лабильность
  • Чувствительность к химическим факторам

Передача информации в химических синапсах

При поступлении потенциала действия к пресинаптическому окончанию происходит деполяризация пресинаптической мембраны и повышается ее проницаемость для ионов Са2+ (рис. 4). Повышение концентрации ионов Са2+ в цитоплазме синаптической бляшки инициирует экзоцитоз везикул, наполненных медиатором.

Содержимое везикул высвобождается в синаптическую щель, и часть молекул медиатора диффундирует, связываясь с рецептор- ными молекулами постсинаптической мембраны. В среднем каждая везикула содержит около 3000 молекул медиатора, а диффузия медиатора до постсинаптической мембраны занимает около 0,5 мс.

При связывании молекул медиатора с рецептором его конфигурация изменяется, что приводит к открытию ионных каналов и поступлению через постсинаптическую мембрану в клетку ионов, вызывающих развитие потенциала концевой пластинки (ПКП).

Рис. 4. Последовательность событий, происходящих в химическом синапсе от момента возбуждения пресинаптического окончания до возникновения ПД в постсинаптической мембране

ПКП возникает в нервно-мышечных синапсах, в остальных — возбуждающий постсинаптический потенциал (ВПСП) или тормозной постсинаптический потенциал (ТПСП). ПКП есть результат местного изменения проницаемости постсинаптической мембраны для ионов Na+, К+ и СI. ПКП не активирует другие хемовозбудимые каналы постсинаптической мембраны, и его величина зависит от концентрации медиатора, действующего на мембрану: чем больше концентрация медиатора, тем выше (до определенного предела) ПКП (ВПСП и ТПСП). Таким образом, ПКП (ВПСП, ТПСП), в отличие от потенциала действия, градуален. При достижении ПКП (ВПСП) некоторой пороговой величины возникают местные токи между участком деполяризованной постсинаптической мембраны с соседними участками электровозбудимой мембраны, что вызывает генерацию потенциала действия.

Если медиатор вызывает открытие Na+-каналов, то возникает ВПСП (по типу деполяризации); если медиатор открывает К+ и СI- каналы, то развивается ТПСП (по типу гиперполяризационного торможения).

Таким образом, процесс передачи возбуждения через химический синапс может быть схематически представлен в виде следующей цепи явлений: потенциал действия на пресинаптической мембране → поступление ионов Ca2i внутрь нервного окончания → освобождение медиатора → диффузия медиатора через синаптическую щель к постсинаптической мембране → взаимодействие медиатора с рецептором → активация хемовозбудимых каналов постсинаптической мембраны возникновение потенциала концевой пластинки (ВПСП) критическая деполяризация постсинаптической электровозбудимой мембраны → генерация потенциала действия.

Медиаторы — это биологически активные вещества, посредством которых осуществляются межклеточные взаимодействия в синапсах. К ним относятся ацетилхолин, катехоламины: адреналин, норадре- налин, дофамин; серотонин, гистамин, простагландины, глицин, гамма-аминомасляная кислота (ГАМК). ГАМК и глицин — наиболее распространенные медиаторы синаптического торможения.

В 1935 г. Г. Дейлом было сформулировано правило (принцип Дейла), согласно которому каждая нервная клетка выделяет только один определенный медиатор. Поэтому принято обозначать нейроны по типу медиатора, который выделяется в их окончаниях. Так, нейроны, освобождающие ацетилхолин, называются холинергическими, норадреналин — адренергическими, серотонин — серотонинерги- ческими, амины — аминергическими и т.д.

Химические синапсы имеют два общих свойства:

  • возбуждение через химический синапс передается только в одном направлении — от пресинаптической мембраны к постсинаптической мембране (одностороннее проведение);
  • возбуждение проводится через синапс значительно медленнее, чем по нервному волокну (синаптическая задержка).

Односторонность проведения обусловлена высвобождением медиатора из пресинаптической мембраны и локализацией рецепторов на постсинаптической мембране. Замедление проведения через синапс (синаптическая задержка) возникает вследствие того, что проведение является многоэтапным процессом (секреция медиатора, диффузия медиатора к постсинаптической мембране, активация хеморецепторов, рост ПКП до пороговой величины) и для протекания каждого из перечисленных этапов требуется время. Кроме того, наличие относительно широкой синаптической щели препятствует проведению импульса с помощью локальных токов.

Особенности строения и функционирования электрических синапсов

Электрический синапс — межклеточное образование, которое обеспечивает передачу импульса возбуждения посредством возникновения электрического тока между пресинаптическим и постсинаптическим отделами.

Электрические синапсы широко распространены в нервной системе беспозвоночных, а у млекопитающих встречаются крайне редко. Вместе с тем электрические синапсы у высших животных широко распространены в сердечной мышце, гладкой мускулатуре, в печени, эпителиальной и железистых тканях.

Ширина синаптической щели в электрических синапсах составляет всего 2-4 нм, что значительно меньше, чем в химических синапсах. Важной особенностью электрических синапсов является наличие между пре- и постсинаптической мембранами своеобразных мостиков, образованных белковыми молекулами, — нексусов. Они представляют собой каналы шириной 1-2 нм (рис. 5).

Свойства электрических синапсов

  • Быстродействие (значительно превосходит в химических синапсах)
  • Слабость следовых эффектов (практически отсутствует суммация последовательных сигналов)
  • Высокая надежность передачи возбуждения
  • Пластичность
  • Одно- и двухсторонность передачи

Рис. 5. Структура электрического синапса. Характерные особенности: узкая (2-4 нм) синаптическая щель и наличие каналов, образованных белковыми молекулами

Благодаря наличию каналов, размеры которых позволяют переходить из клетки в клетку неорганическим ионам и даже небольшим молекулам, электрическое сопротивление такого синапса, получившего название щелевого или высокопроницаемого контакта, оказывается очень низким. Такие условия позволяют пресинаптическому току распространяться на постсинаптическую клетку практически без угасания.

Электрические синапсы обладают рядом специфических функциональных свойств:

  • синаптическая задержка практически отсутствует, т.е. интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала отсутствует;
  • в электрических синапсах двустороннее проведение, хотя стереометрические особенности синапса делают проведение в одном направлении более эффективным;
  • электрические синапсы, в отличие от химических, могут обеспечить передачу только одного процесса — возбуждения;
  • электрические синапсы менее подвержены воздействию различных факторов (фармакологических, термических и т.д.).

Наряду с химическими и электрическими синапсами, у некоторых нейронов имеются так называемые смешанные синапсы. Их главная особенность заключается в том, что электрическая и химическая передача осуществляется параллельно, поскольку щель между пре- и постсинаптической мембранами имеет участки со структурой химического и электрического синапсов.

0.063 сек.