Финансовая математика — предмет изучения

Предметом изучения курса финансовой математики является выбор условий финансовой сделки между субъектами финансового рынка и расчет параметров этой сделки.

Курс финансовой математики состоит из двух разделов: разовые платежи и потоки платежей. Разовые платежи — это финансовые сделки, при которых каждая сторона, при реализации условий контракта выплачивает сумму денег только один раз (либо дает в долг, либо отдает долг). Потоки платежей — это финансовые сделки, при которых каждая сторона при реализации условий контракта производит не менее одного платежа.

В финансовой сделке участвуют две стороны — кредитор и заемщик. Каждой стороной может быть как банк, так и клиент. Основная финансовая сделка — предоставление некоторой суммы денег в долг. Деньги не равносильны относительно времени. Современные деньги, как правило, ценнее будущих. Ценность денег во времени отражается в величине начисляемых процентных денег и схеме их начисления и выплаты.

Математическим аппаратом для решения таких задач является понятие "процентов" и арифметической и геометрической прогрессии.

Проценты — основные понятия

Процент — одна сотая от заранее оговоренной базы (то есть база соответствует 100%).

Примеры:
  1. 2 составляет 4% от 50; (база 50)
  2. 80 меньше 100 на 20%; (база 80)
  3. 100 больше 80 на 25% (база 80)
  4. Новая цена товара в 6 раз больше первоначально. На сколько % увеличилась цена товара? Ответ: на 500%.
  5. Цена товара возрасла на 1000%. Во сколько раз увеличилась цена товара? Ответ: в 11 раз.
  6. В течение торговой сессии курс акций компании повысился на , а курс акций компании снизился на 5%, в результате чего эти два курса сравнялись. на сколько процентов курс акций компании был выше курса акций компании до начала сессии?

, , ответ: больше на

первоначальная сумма долга
(дни) фиксированный промежуток времени, к которому приурочена процентная (учетная) ставка (как правило, один год — 365, иногда 360 дней)
процентная (учетная) ставка за период
срок долга в днях
срок долга в долях от периода
сумма долга в конце срока

Процентная ставка

Процентная ставка — относительная величина дохода за фиксированный отрезок времени. Отношение дохода (процентных денег — абсолютная величина дохода от представления денег в долг) к сумме долга.

Период начисления — это временной интервал, к которому приурочена процентная ставка, его не следует путать со сроком начиления. Обычно в качестве такого периода принимаю год, полугодие, квартал, месяц, но чаще всего дело имеют с годовыми ставками.

Капитализация процентов — присоединение процентов к основной сумме долга.

Наращение — процесс увеличения суммы денег во времени в связи с присоединением процентов.

Дисконтирование — обратно наращению, при котором сумма денег, относящаяся к будущему уменьшается на величину соответствующую дисконту (скидке).

Величина называется множителем наращения, а величина — множителем дисконтирования при соответствующих схемах.

Интерпретация процентной ставки

При схеме "простых процентов" исходной базой для начисления процентов в течение всего срока долга на каждом периоде применения процентной ставки является первоначальная сумма долга .

При схеме "сложных процентов" (для целых ) исходной базой для начисления процентов в течение всего срока на каждом периоде применения процентной ставки является наращенная за предыдущий период сумма долга.

Присоединение начисленных процентных денег к сумме, которая служит базой для их вычисления, называется капитализацией процентов (или реинвестированием вклада). При применении схемы "сложных процентов" капитализация процентов происходит на каждом периоде .

Интерпретация учетной ставки

При схеме "простых процентов" (простой дисконт) — исходной базой для начисления процентов в течение всего срока долга на каждом периоде применения учетной ставки является сумма , подлежащая выплате в конце срока вклада.

При схеме "сложных процентов" (для целых ) (сложный дисконт) — исходной базой для начисления процентов в течение всего срока на каждом периоде применения учетной ставки является сумма долга в конце каждого периода.

Простая и сложная процентные ставки

"Прямые" формулы

Простые проценты Сложные проценты
— процентная ставка наращение
— процентная ставка
дисконтирование (банковский учет)

"Обратные" формулы

Простые проценты Сложные проценты
— процентная ставка дисконтирование (математический учет)
— процентная ставка наращение

Переменная процентная ставка и реинвестирование вкладов

Пусть срок долга имеет этапов, длина которых равна , ,

— при схеме простых процентов

— при схеме простых процентов

Примеры:

1. В контракте предусмотрено начисление а) простого, б) сложного процента в таком порядке: в первом полугодии по годовой процентной ставке 0,09, потом в следующем году ставка уменьшилась на 0,01, а в следующих двух полугодиях увеличилась на 0,005 в каждом из них. Найти величину наращенного вклада в конце срока, если величина первоначального вклада равна $800.

,

,

,

,

а)

б)

Рыночная процентная ставка как важнейший макроэкономический показатель

Важным макроэкономическим показателем выступает процентная ставка. Процентная ставка — это плата за деньги, предоставляемые в кредит. Были времена, когда законом не допускалось вознаграждение за то, что неизрасходованные, заемные деньги давали в заем. В современном мире широко пользуются кредитами, за пользование которыми устанавливается процент. Поскольку процентные ставки измеряют издержки использования денежных средств предпринимателями и вознаграждение за неиспользование денег потребительским сектором, то уровень процентных ставок играет значительную роль в экономике страны в целом.

Очень часто в экономической литературе пользуются термином "процентная ставка", хотя существует множество процентных ставок. Дифференциация процентных ставок связана с риском, на который идет заимодатель. Риск возрастает с увеличением срока кредита, так как становится выше вероятность того, что деньги могут потребоваться кредитору раньше установленной даты возврата ссуды, соответственно повышается процентная ставка. Она увеличивается, когда за кредитом обращается малоизвестный предприниматель. Мелкая фирма уплачивает более высокую процентную ставку, чем крупная. Для потребителей процентные ставки также варьируются.

Однако как бы ни отличались ставки процента, все они находятся под воздействием рыночного механизма: если предложение денег уменьшается, то процентные ставки увеличиваются, и наоборот. Именно поэтому рассмотрение всех процентных ставок можно свести к изучению закономерностей одной процентной ставки и в дальнейшем оперировать термином "процентная ставка"

Различают номинальные и реальные процентные ставки

Реальная процентная ставка определяется с учетом уровня инфляции. Она равна номинальной процентной ставке, которая устанавливается под воздействием спроса и предложения, за вычетом уровня инфляции:

= i — %ΔP

  • — реальная процентная ставка;
  • — номинальная процентная ставка;
  • — общий уровень цен.

Если, например, банк предоставляет кредит и взимает при этом 15%, а уровень инфляции составляет 10%, то реальная процентная ставка равна 5% (15% — 10%).

Способы начисления процентов:

Декурсивный способ проценты начисляются в конце каждого интервала начисления ссудный процент
Антисипативный способ проценты начисляются в начале каждого интервала начисления учетная ставка
  • — проценты за весь срок ссуды
  • — первоначальная сумма долга
  • — наращенная сумма, то есть сумма в конце срока
  • — ставка наращения процентов
  • — срок ссуды
Простая процентная ставка Сложная процетная ставка
Начисленные за весь срок проценты:
Наращенная сумма

Простая процентная ставка

График роста по простым процентам

Пример

Определить проценты и сумму накопленного долга если ставка по простым процентам 20% годовых , ссуда равна 700 000 руб., срок 4 года.

  • I = 700 000 * 4 * 0,2 = 560 000 руб.
  • S = 700 000 + 560 000 = 1 260 000 руб.

Ситуация, когда срок ссуды меньше периода начисления

  • — число дней ссуды
  • — временная база начисления процентов (time basis)
Временная база может быть равна:
  • 360 дней. В в этом случае получают обыкновенные или коммерческие проценты.
  • 365 или 366 дней. Используется для расчета точных процентов.
Число дней ссуды
  • Точное число дней ссуды — определяется путем подсчета числа дней между датой ссуды и датой ее погашения. День выдачи и день погашения считаются за один день. Точное число дней между двумя датами можно определить по таблице порядковых номеров дней в году.
  • Приближенное число дней ссуды — определяется из условия, согласно которому любой месяц принимается равным 30 дням.
На практике применяются три варианта расчета простых процентов:
  • Точные проценты с точным числом дней ссуды (365/365)
  • Обыкновенные проценты с точным числом дней ссуды (банковский; 365/360). При числе дней ссуды, превышающем 360, данный способ приводит к тому, что сумма начисленных процентов будет больше, чем предусматривается годовой ставкой.
  • Обыкновенные проценты с приближенным числом дней ссуды (360/360). Применяется в промежуточных рассчетах, так как не сильно точный.

Пример

Ссуда в размере 1 млн.рублей выдана 20 января до 5 октября включительно под 18% годовых. Какую сумму должен заплатить должник в конце срока при начислении простых процентов? Рассчитать в трех вариантах подсчета простых процентов.

Для начала определим число дней ссуды: 20 января это 20 день в году, 5 октября — 278 день в году. 278 — 20 = 258. При приближенном подсчете — 255. 30 января — 20 января = 10. 8 месяц умножить на 30 дней = 240. итого: 240 + 10 + 5 = 255.

1. Точные проценты с точным числом дней ссуды (365/365)

  • S = 1 000 000 * (1 + (258/365)*0.18) = 1 127 233 руб.

2. Обыкновенные проценты с точным числом дней ссуды (360/365)

  • S = 1 000 000 * (1 + (258/360)*0.18 = 1 129 000 руб.

3. Обыкновенные проценты с приближенным числом дней ссуды (360/360)

  • S = 1 000 000 (1 + (255/360)*0.18 = 1 127 500 руб.

Переменные ставки

В кредитных соглашениях иногда предусматриваются изменяющиеся во времени процентные ставки. Если это простые ставки, то наращенная на конец срока сумма определяется следующим образом:


Финансы
Смежные предметы

Финансовая математика

Финансовая математика Эффективная процентная ставка
Финансовая математика - основные понятия финансовой сделки
Процентная ставка. Простая и сложная процентные ставки