www.Grandars.ru » Экономическая теория » Микроэкономика »

Производственная функция

Производственная функция

В реальной жизни в пределах используемой технологии предприниматель стремится найти наилучшее сочетание факторов производства, с тем чтобы достичь наибольшего выхода продукции. Отношение между любым набором факторов производства и максимально возможным объемом продукции, производимой из этого набора факторов, характеризует производственную функцию.

Производственная функция — технологическая зависимость между затратами ресурсов и выпуском продукции.

В микроэкономике используется большое количество самых разнообразных функций производства, но чаще всего — двухфакторные функции вида: , которые легче анализировать в силу их графического представления.

Среди двухфакторынх функций наибольшую известность получила функция Кобба-Дугласа, имеющая вид:

где:

  • — положительные константы
  • — количество используемых ресурсов (обычно рассматривают труд и  капитал)

Производственная функция характеризует техническую зависимость между ресурсами и выпуском и описывает всю совокупность технологически эффективных способов. Каждый способ может быть описан своей производственной функцией.

Постоянные и переменные ресурсы

Все ресурсы, используемые фирмой в процессе производства условно делят на два класса: постоянные и переменные:

Ресурсы, количество которых не зависит от объема выпуска и является неизменным в течение рассматриваемого периода, называются постоянными. Сюда могут относиться: производственные площади, особые знания высококвалифицированного персонала, технологии и ноу-хау.

Ресурсы, количество которых напрямую зависит от объема выпуска, называются переменными. Примером переменных ресурсов могут служить электроэнергия, большинство видов сырья и материалов, транспортные услуги, труд рабочих и инженерно-технического персонала.

Краткосрочный и долгосрочный период

Деление ресурсов на постоянные и переменные позволяет выделить краткосрочный и долгосрочный периоды в деятельности фирмы.

Период, в течение которого фирма в состоянии изменить лишь часть ресурсов (переменные), а другая часть остается неизменными (постоянные), называется краткосрочным периодом. В краткосрочном периоде объем выпуска фирмы зависит исключительно от изменения переменного ресурса.

Период, в течение которого фирма может изменить количество всех используемых ею ресурсов, называется долгосрочным.

Продолжительность краткосрочного и долгосрочного периода может быть неодинаковой в различных сферах производства. Там, где объем постоянных ресурсов невелик, а характер производства позволяет легко менять  постоянные ресурсы, краткосрочный период длится не более нескольких месяцев (швейная, пищевая промышленность, розничная торговля и т.д.). Для других отраслей краткосрочный период может составлять 1-3 года (автомобильная промышленность, авиастроение, угледобыча) или даже от 6 до 10 лет (электроэнергетика).

 

Деятельность фирмы в краткосрочном периоде

Деятельность фирмы в краткосрочном периоде может быть охарактеризована при помощи краткосрочной функции производства: , где — количество постоянного ресурса, — количество переменного ресурса.

Краткосрочная функция производства показывает максимальный объем выпуска, который фирма может произвести, изменяя количество и комбинацию переменных ресурсов, при данном количестве постоянных ресурсов.

Основные показатели деятельности фирмы

Для упрощения нашего анализа предположим, что фирма использует всего два ресурса:

  • переменные ресурс — труд ()
  • постоянный ресурс — капитал ()

А также введем новые понятия: совокупный, средний и предельный продукты.

Совокупный продукт () — общий объем произведенной фирмой товаров и услуг за единицу времени

Средний продукт () — доля совокупного продукта за единицу используемого ресурса

Различают средний продукт:
  • по переменному ресурсу:
  • по постоянному фактору:

Предельный продукт (MP) — величина прироста совокупного продукта, при изменении используемого ресурса на единицу времени.

Поскольку мы рассматриваем краткосрочный период, то изменяться может лишь переменный ресурс, в нашем случае — труд.

Предельный продукт труда () — показывает прирост совокупного продукта при увеличении количества труда на единицу.

Подсчитывается по одной из двух возможных формул:

дискретный предельный продукт

 

где:

  • — два последующих значения совокупного продукта (объем выпуска)
  • — соответственно два последующих значения переменного ресурса (труд)

Формула дискретного предельного продукта используется в том случае, когда имеются только количественные значения выработки и используемых ресурсов в единицу времени, но не известна производственная функция.

непрерывный предельный продукт

МРL=dQ/dL=Q`(L)

В случае если в производстве используется несколько переменных ресурсов, то нахождение предельного продукта одного из них осуществляется через частную производную. Q=7*x2+8*z2-5*x*z, где x,z — переменные ресурсы, тогда , аналогичным образом .

Пример 14.1

Расчет среднего и предельного продуктов для производственной функции, имеющей вид:

Q = 21*L+9L2-L3+2

Непрерывный предельный продукт может быть рассчитан как производная от функции производства: MPL = Q`(L) = 21+18*L-3*L2 , подставив соответствующие значения L можно получить необходимые данные непрерывного MPL.

Запишем данные расчетов в таблицу:

Переменный ресурс (труд)

Совокупный продукт

Дискретный предельный продукт по переменному ресурсу

Средний продукт по переменному ресурсу

TP=21L+9L2-L3+2

МРL = (Q2 — Q1) / (L2 — L1)

APL=TP/L

0

0

-

-

1

31

31

31

2

72

41

36

3

119

47

40

4

166

47

42

5

207

41

42

6

236

29

39

7

247

11

35

8

234

-13

29

9

191

-43

21

Графическое изображение функции производства

Представим графически полученные нами результаты из таблицы выше:

  1. На первом этапе (при L от 0 до 4) происходит повышение отдачи переменного ресурса (т.е. срдений продукт APL растет), предельный продукт труда MPL также увеличивается и достигает своего максимального значения. Затем предельный продукт перестает расти (MPL = max, при L=3) и достигает точки своего максимума (иногда ее называют точкой убывания предельного продукта). При этом средний продукт APL продолжает расти до своего максимального значения (в нашем примере APL = max при L=4).
  2. На втором этапе (при L от 4 до 7) наблюдается уменьшение отдачи переменного ресурса (т.е. средний продукт APL убывает), предельный продукт MPL также продолжает сокращаться и достигает нуля (MP = 0 при L=7). При этом объем совокупного продукта TP становится максимально возможным и его дальнейшее увеличении за счет прироста только переменных ресурсов уже неосуществимо.
  3. На третьем этапе (L > 7) предельный продукт приобретает отрицательное значение (MP <0), а совокупный продукт TP начитает сокращаться.

Для достижения наиболее эффективных результатов и минимизации издержек фирме следует использовать переменный ресурс в объеме, соответствующем 2 этапу. На 1 этапе дополнительное использование переменного ресурса ведет к снижению средних издержек. На 3 этапе сокращаются совокупный объем выпуска и средние издержки (т.е. прибыльность падает).

Причина подобного поведения производственной функции кроется в законе убывания предельной отдачи:

Закон убывания предельной отдачи. Начиная с некоторого момента времени, дополнительное использование переменного ресурса при неизменном количестве постоянного ресурса ведет к сокращению предельной отдачи, или предельного продукта.

Данный закон носит универсальный характер и характерен практически для всех экономических процессов.

Определение предельного продукта в случае нескольких переменных ресурсов

Если в производстве используется несколько переменных ресурсов, то нахождение предельного продукта одного из них осуществляется через частную производную.

Рассмотрим пример. Пусть производственная функция имеет вид:

,

где — переменные ресурсы.

Тогда

.

Аналогичным образом

.

Соотношение кривой среднего и предельного продукта

На представленном выше графике отмечена еще одна важная закономерность, касающаяся соотношения среднего и предельного продукта.

Независимо от вида производственной функции кривая среднего продукта растет пока значения MP>AP, падает, когда MP

Таким образом, если предельный продукт превышает средний продукт, то средний продукт увеличивается, и наоборот, если предельный продукт меньше среднего продукта, то средний продукт уменьшается.

Другими словами, если средний продукт достигает своего максимума при условии равенства среднего и предельного продуктов.


Предмет микроэкономики
Спрос и предложение
Эластичность спроса и предложения
Производство
Производство - общая характеристика и эффективность производства
Производство и его типы - единичное, серийное и массовое Основные формы организации производства
Техническая подготовка производства Специализация, концентрация и кооперирование производства
Конструкторская подготовка производства, её задачи и этапы
Технологическая подготовка производства
Производственная функция
Понятие производственной функции Изокванта и изокоста
Виды издержек производства. Постоянные и переменные издержки
Предельные и средние издержки. Предельный доход производства
Трансакционные издержки - теория, формы и примеры
Холдинговая прибыль и убытокЭффект масштаба производства Кривая производственных возможностей
Сдвиг и точки кривой производственных возможностейПонятие и граница производственных возможностейЭффективность в экономике: понятие экономической эффективности ресурсов по Парето. Оптимум Парето
Кардиналистская теория полезности
Рыночное равновесие
Конкуренция и рыночная структура