www.Grandars.ru » Экономическая теория » Микроэкономика »

Понятие производственной функции

Понятие производственной функции

Производством называется любая человеческая деятельность по преобразованию ограниченных ресурсов — материальных, трудовых, природных — в готовую продукцию. Производственная функция характеризует зависимость между количеством используемых ресурсов (факторов производства) и максимально возможным объемом выпуска, который может быть достигнут при условии, что все имеющиеся ресурсы используются наиболее рациональным образом.

Производственная функция обладает следующими свойствами:

1. Существует предел увеличения производства, который может быть достигнут при увеличении одного ресурса и постоянстве прочих ресурсов. Если, например, в сельском хозяйстве увеличивать количество труда при постоянных количествах капитала и земли, то рано или поздно наступает момент, когда выпуск перестает расти.

2. Ресурсы дополняют друг друга, но в определенных пределах возможна и их взаимозаменяемость без сокращения выпуска. Ручной труд, например, может заменяться использованием большего количества машин, и наоборот.

3. Чем длиннее временной период, тем большее количество ресурсов может быть пересмотрено. В этой связи различают мгновенный, короткий и длительный периоды. Мгновенный период — период, когда все ресурсы являются фиксированными. Короткий период — период, когда, по крайней мере, один ресурс является фиксированным. Длительный период - период, когда все ресурсы являются переменными.

Обычно в микроэкономике анализируется двухфакторная производственная функция, отражающая зависимость выпуска (q) от количества используемых труда () и капитала (). Напомним, что под капиталом понимаются средства производства, т.е. количество машин и оборудования, используемое в производстве и измеряемое в машино-часах (тема 2, п. 2.2). В свою очередь количество труда измеряется в человеко-часах.

Как правило, рассматриваемая производственная функция выглядит так:

A, α, β — заданные параметры. Параметр А — это коэффициент совокупной производительности факторов производства. Он отражает влияние технического прогресса на производство: если производитель внедряет передовые технологии, величина А возрастает, т.е. выпуск увеличивается при прежних количествах труда и капитала. Параметры α и β — это коэффициенты эластичности выпуска соответственно по капиталу и труду. Иными словами, они показывают, на сколько процентов изменяется выпуск при изменении капитала (труда) на один процент. Коэффициенты эти положительны, но меньше единицы. Последнее означает, что при росте труда при постоянном капитале (либо капитала при постоянном труде) на один процент производство возрастает в меньшей степени.

Построение изокванты

Приведенная производственная функция говорит о том, что производитель может заменять труд капитаном и капитал трудом, оставляя выпуск неизменным. Например, в сельском хозяйстве развитых стран труд является высокомеханизированным, т.е. на одного работника приходится много машин (капитала). Напротив, в развивающихся странах тот же объем производства достигается за счет большого количества труда при незначительном капитале. Это позволяет построить изокванту (рис. 8.1).

Изокванта (линия равного продукта) отражает все комбинации двух факторов производства (труда и капитала), при которых выпуск остается неизменным. На рис. 8.1 рядом с изоквантой проставлен соответствующий ей выпуск. Так, выпуск , достижим при использовании труда и капитала или с использованием труда и капитана.

Рис. 8.1. Изокванта

Возможны и другие комбинации объемов труда и капитала, минимально необходимых для достижения данного выпуска.

Все комбинации ресурсов, соответствующих данной изокванте, отражают технически эффективные способы производства. Способ производства A является технически эффективным в сравнении со способом В, если он требует использования хотя бы одного ресурса в меньшем количестве, а всех остальных не в больших количествах в сравнении со способом В. Соответственно способ В является технически неэффективным в сравнении с А. Технически неэффективные способы производства не используются рациональными предпринимателями и не относятся к производственной функции.

Из вышесказанного вытекает, что изокванта не может иметь положительный наклон, как это показано на рис. 8.2.

Отрезок, выделенный пунктиром, отражает все технически неэффективные способы производства. В частности, в сравнении со способом А способ В для обеспечения одинакового выпуска () требует того же количества капитала, но большего количества труда. Очевидно, поэтому, что способ B не является рациональным и не может приниматься в расчет.

На основе изокванты можно определить предельную норму технической замены.

Предельная норма технической замены фактора Y фактором X (MRTSXY) — это количество фактора (например, капитала), от которого можно отказаться при увеличении фактора (например, труда) на 1 ед., чтобы выпуск не изменился (остаемся на прежней изокванте).

Рис. 8.2. Технически эффективное и неэффективное производство

Следовательно, предельная норма технической замены капитала трудом исчисляется по формуле

При бесконечно малых изменениях L и K она составляет

Таким образом, предельная норма технической замены есть производная функции изокванты в данной точке. Геометрически она представляет собой наклон изокванты (рис. 8.3).

Рис. 8.3. Предельная норма технической замены

При движении сверху — вниз вдоль изокванты предельная норма технической замены все время убывает, о чем говорит уменьшающийся наклон изокванты.

Если же производитель увеличивает и труд, и капитал, то это позволяет ему достичь большего выпуска, т.е. перейти на более высокую изокванту (q2). Изокванта, расположенная правее и выше предыдущей, соответствует большему объему выпуска. Совокупность изоквант образует карту изоквант (рис. 8.4).

Рис. 8.4. Карта изоквант

Особые случаи изоквант

Напомним, что приведенные изокванты соответствуют производственной функции вида . Но бывают и другие производственные функции. Рассмотрим случай, когда имеет место совершенная замещаемость факторов производства. Допустим, например, что на складских работах можно использовать квалифицированных и неквалифицированных грузчиков, причем производительность квалифицированного грузчика в N раз выше, чем неквалифицированного. Это означает, что мы можем заменить любое количество квалифицированных грузчиков неквалифицированными в соотношении N к одному. И наоборот, можно заменить N неквалифицированных грузчиков одним квалифицированным.

Производственная функция при этом имеет вид: где — число квалифицированных рабочих, — число неквалифицированных рабочих, а и b — постоянные параметры, отражающие производительность соответственно одного квалифицированного и одного неквалифицированного рабочего. Соотношение коэффициентов а и b — предельная норма технической замены неквалифицированных грузчиков квалифицированными. Она постоянна и равна N: MRTSxy = a/b = N.

Пусть, например, квалифицированный грузчик в состоянии в единицу времени обработать 3 т груза (это будет коэффициент а в производственной функции), а неквалифицированный — только 1 т (коэффициент b). Значит, работодатель может отказаться от трех неквалифицированных грузчиков, дополнительно нанимая одного квалифицированного грузчика, чтобы выпуск (общий вес обработанного груза) при этом остался прежним.

Изокванта в данном случае является линейной (рис. 8.5).

Рис. 8.5. Изокванта при совершенной заменяемости факторов

Тангенс угла наклона изокванты равен предельной норме технической замены неквалифицированных грузчиков квалифицированными.

Еще одна производственная функция — функция Леонтьева. Она предполагает жесткую дополняемость факторов производства. Это означает, что факторы могут использоваться только в строго определенной пропорции, нарушение которой технологически невозможно. Например, авиационный рейс может быть нормально осуществлен при наличии как минимум одного самолета и пяти членов экипажа. При этом нельзя увеличивать самолето-часы (капитал), одновременно сокращая человеко-часы (труд), и наоборот, и сохранять неизменным выпуск. Изокванты в данном случае имеют вид прямых углов, т.е. предельные нормы технической замены равны нулю (рис. 8.6). В то же время можно увеличивать выпуск (количество рейсов), увеличивая в одной и той же пропорции и труд, и капитал. Графически это означает переход на более высокую изокванту.

Рис. 8.6. Изокванты в случае жесткой дополняемости факторов производства

Аналитически такая производственная функция имеет вид: q = min {aK; bL}, где а и b — постоянные коэффициенты, отражающие производительность соответственно капитала и труда. Соотношение этих коэффициентов определяет пропорцию использования капитала и труда.

В нашем примере с авиарейсом производственная функция выглядит так: q = min{1K; 0,2L}. Дело в том, что производительность капитала здесь составляет один рейс на один самолет, а производительность труда — один рейс на пять человек или 0,2 рейса на одного человека. Если авиакомпания располагает самолетным парком в 10 машин и имеет 40 человек летного персонала, то ее максимальный выпуск составит: q = min{ 1 х 8; 0,2 х 40} = 8 рейсов. Два самолета при этом будут простаивать на земле из-за нехватки персонала.

Взглянем, наконец, на производственную функцию, предполагающую существование ограниченного числа производственных технологий для производства заданного количества продукции. Каждой из них соответствует определенное состояние труда и капитала. В результате мы имеем ряд опорных точек в пространстве «труд-капитал», соединив которые, получаем ломаную изокванту (рис. 8.7).

Рис. 8.7. Ломаные изокванты при наличии ограниченного числа производственных методов

На рисунке видно, что выпуск продукции в объеме q1 можно получить при четырех комбинациях труда и капитала, соответствующих точкам А, B, С и D. Возможны также и промежуточные комбинации, достижимые в тех случаях, когда предприятие совместно использует две технологии для получения определенного совокупного выпуска. Как всегда, увеличив количества труда и капитала, мы переходим на более высокую изокванту.


Предмет микроэкономики
Спрос и предложение
Эластичность спроса и предложения
Производство
Производство - общая характеристика и эффективность производства
Производство и его типы - единичное, серийное и массовое Основные формы организации производства
Техническая подготовка производства Специализация, концентрация и кооперирование производства
Конструкторская подготовка производства, её задачи и этапы
Технологическая подготовка производства
Производственная функция
Понятие производственной функции Изокванта и изокоста
Виды издержек производства. Постоянные и переменные издержки
Предельные и средние издержки. Предельный доход производства
Трансакционные издержки - теория, формы и примеры
Холдинговая прибыль и убытокЭффект масштаба производства Кривая производственных возможностей
Сдвиг и точки кривой производственных возможностейПонятие и граница производственных возможностейЭффективность в экономике: понятие экономической эффективности ресурсов по Парето. Оптимум Парето
Кардиналистская теория полезности
Рыночное равновесие
Конкуренция и рыночная структура