www.Grandars.ru » Медицина » Физиология »

Возбудимость и проводимость сердца

Особенности возбудимости, проводимости и сократимости сердечной мышцы

Сократительные кардиомиоциты представлены клетками длиной около 100-150 мкм и толщиной около 10-15 мкм (миокард желудочков), 40-70 мкм и 5-6 мкм соответственно (миокард предсердий). Они имеют многие общие черты строения и обладают функциями, присущими другим типам клеток, в частности клеткам скелетных мышц. В то же время кардиомиоциты характеризуются рядом особенностей строения и свойств, обеспечивающих выполнение ими функций возбуждения, проведения возбуждения и сокращения, специфических для миокарда.

Возбудимость сердечной мышцы

Важнейшими особенностями возбудимости сердечной мышцы являются:

  • способность возбуждаться в ответ на поступление потенциала действия из проводящей системы сердца;
  • способность более длительно находиться в состоянии возбуждения, по сравнению с волокнами скелетной мышцы;
  • наличие длительного периода абсолютной рефрактерности, почти совпадающего по времени с длительностью одиночного сокращения (систолы).

Возбудимость обусловлена свойствами плазматической мембраны (сарколеммы) сократительного кардиомиоцита, в которой имеются разнообразные ионные каналы. Мембрана состоит из внутреннего слоя толщиной около 10 нм и наружного примембранного слоя гликокаликса. Основой клеточной мембраны кардиомиоцитов является фосфолипидный бислой, в котором каналообразующие белки формируют натриевые, кальциевые, калиевые и другие типы каналов. На внутренней поверхности мембраны имеются области, с которыми связано большое количество ионов кальция. Этот пул кальциевых ионов может быстро высвобождаться внутрь клетки во время возбуждения или обмениваться с внеклеточным пространством.

В состоянии покоя (в диастолу) трансмембранная разность потенциалов кардиомиоцита составляет около 85-90 мВ (фаза 4-го мембранного потенциала). Это обусловлено разностью концентраций ионов но обе стороны мембраны, высокой плотностью в ней Na+ / К+ АТФазы и примерно в 10 раз более высокой проницаемостью мембраны в покос для ионов K+, чем в миоцитах скелетных мышц. Соотношение проницаемостей в мембране сократительного кардиомиоцита Рк+: PNa+: РCI-= = 1 : 0,05: 0,1.

Поступающий из проводящей системы к кардиомиоцитам через каналы щелевых контактов потенциал действия деполяризует их мембрану. Когда величина деполяризации достигает критического уровня (около -60 мВ), изменяют свою пространственную конформацию активационные ворота быстрых потенциалзависимых натриевых каналов и через открывающиеся каналы поток ионов Na+по градиентам электрического поля и концентрации устремляется в миоцит, быстро деполяризует и вскоре перезаряжает мембрану — фаза 0 потенциала действия (рис. 1). Проницаемость мембраны для ионов Na+ за период времени, пока открыты активационные ворота, возрастает в несколько сот раз но сравнению с проницаемостью в состоянии покоя. Смена заряда на мембране, поляризованной до +20 мВ, сопровождается закрытием инактивационных ворот натриевых каналов и прекращением входа ионов Na+ в миоцит. Инактивационные ворота натриевых каналов остаются закрытыми до момента, пока мембрана клетки не будет частично реполяризована в фазу 3 потенциала действия. В течение времени от момента активации — открытия натриевых каналов в фазу 0 до их реактивации в фазу 3 мембрана кардиомиоцитов находится в состоянии абсолютной рефрактерности и, таким образом, никакие воздействия на ее в это время не могут вызвать на мембране новый процесс возбуждения и сокращения миокарда.

Рис. 1. Соотношение во времени процессов возбуждения, возбудимости и сокращения в сократительных миоцитах миокарда: а — исходная возбудимость; б — период абсолютной невозбудимости (рефрактерности); в — период относительной рсфрактсрности; г — период повышенной возбудимости; I — потенциал действия сократительных кардномиоцнтов (0, 1, 2, 3, 4 — фазы потенциала действия); II — сокращение миокарда; III изменение возбудимости миокарда в процессе возбуждения

Во время деполяризации мембраны наряду с активацией натриевых каналов происходит активация и открытие нескольких типов медленных потенциалзависимых калиевых каналов. Выход ионов К+ из клетки через эти каналы по концентрационному градиенту, но против градиента электрического ноля, запаздывает но отношению ко входу в клетку ионов Na+. Суммарный ноток выходящих ионов К+ начинает существенно превышать вход ионов Na+ с момента инактивации проницаемости натриевых каналов. Когда мембрана клетки приобретает изнутри избыток положительных зарядов, ионы К+ выходят из клетки уже не только но градиенту их концентраций, но и по градиенту электрического поля. Выход ионов К+ обусловливает развитие фазы быстрой реполяризации мембраны миоцита (фаза 1 потенциала действия).

Деполяризация мембраны кардиомиоцита до уровня около -70 мВ сопровождается открытием потенциалзависимых кальциевых каналов Т-типа, через которые в клетку поступает некоторое количество ионов Са2+. Однако плотность этих каналов в мембране кардиомиоцитов невелика. При деполяризации мембраны до уровня около -10 мВ активируются медленные потенциалзависимые кальциевые каналы L-типа. Вскоре после начала реполяризации мембраны миоцита вход положительных зарядов ионов Са2+ по градиенту концентрации в клетку сравнивается с выходом положительных зарядов ионов К+ из клетки, скорость реполяризации замедляется, а фаза 1 потенциала сменяется фазой 2, или фазой плато потенциала действия.

Входящие в фазу плато в кардиомиоцит ионы Са2+ имеют значение не только для удерживания мембраны в деполяризованном состоянии в течение длительного промежутка времени, но и в высвобождении дополнительного количества кальция из примембранного пула и саркоплазматического ретикулума, а также в сопряжении процессов возбуждения и сокращения миоцитов.

Постепенно развивающаяся инактивация медленных кальциевых каналов ведет к тому, что выход положительно заряженных ионов К через калиевые каналы вновь начинает доминировать над входом ионов Са2+ и фаза плато сменяется новым ускорением реполяризации мембраны — фазой 3 потенциала. Вскоре мембрана кардиомиоцита реполяризуется до исходного значения трансмембранной разности потенциалов около 90 мВ, характерной для диастолы миокарда (фаза 4).

Таким образом, общая длительность потенциала действия сократительных кардиомиоцитов, вследствие наличия в их мембране ионных каналов медленного типа и других особенностей проницаемости, составляет около 300 мс, что почти в 100 раз превышает длительность потенциала в миоцитах скелетных мышц. Особенно важно, что из 300 мс около 200 мс приходится на фазу плато потенциала действия, во время которой в клетку поступают ионы Ca2+, участвующие как в процессе возбуждения, так и в процессе сокращения.

Важное физиологическое значение в регуляции электрических и механических процессов миокарда имеет то, что процессы активации и инактивации потенциалзависимых кальциевых и других ионных каналов мембраны кардиомиоцитов могут модулироваться не только величиной трансмембранной разности потенциалов, но и действием различных сигнальных молекул. Известно, что кальциевые каналы не только потенциалзависимы, но и чувствительны к дигидропиридину. Их проницаемость модулируется при фосфорилировании цАМФ зависимой протеинкиназой А. В настоящее время создан ряд лекарственных веществ (в частности, производных дигидропиридина), с помощью которых оказалось возможным управлять потоками ионов Са2+ и оказывать влияние на частоту, ритм, силу и другие показатели сокращений сердца.

Восстановление нормального распределения ионов Na+, К+ и Са2+ по обе стороны мембраны, нарушенного в процессе генерации потенциала действия, осуществляется Na+ /K+ — насосом, кальциевым насосом и натрий кальциевым обменным механизмом.

Состояние возбудимости мембраны сократительного кардиомиоцита в процессе возбуждения определяет возможность возникновения нового процесса возбуждения и последующего сокращения кардиомиоцитов в ходе уже начавшегося возбуждения, т.е. в различные фазы потенциала действия.

В течение времени от начала открытия потенциалзависимых натриевых каналов (фаза 0) и примерно до середины периода конечной реполяризации (-50 мВ), когда становится возможной реактивация инактивированных натриевых каналов (фаза 3), мембрана сократительных кардиомиоцитов находится в состоянии абсолютной невозбудимости (рефрактерности). Продолжительность этого периода составляет около 240 мс при общей продолжительности потенциала действия около 300 мс (рис. 1.3). Состояние абсолютной рефрактерности мембраны кардномиоцитов имеет важное физиологическое значение. Оно заключается в том, что воздействие в этот период на сердце каких-либо стимулов, не оказывает влияния на начавшееся сокращение (систолу) миокарда. Благодаря этому сердечная мышца, в отличие от скелетных мышц, не способна к суммации одиночных сокращений и развитию тетанического сокращения, что предотвращает нарушение насосной функции сердца.

Период абсолютной рефрактерности мембраны сменяется переходом мембраны в состояние относительной рефрактерности. В конце фазы 3 потенциала уже возможно открытие натриевых каналов под действием стимула, сила которого превышает пороговую. В это время на мембране кардиомиоцита способен возникнуть потенциал действия меньшей амплитуды, но он может оказаться достаточным для запуска нового внеочередного сокращения. Период относительной рефрактерности длится около 30 мс.

За несколько десятков миллисекунд до окончания реполяризации мембраны се возбудимость может оказаться более высокой, чем в состоянии покоя. Это объясняется тем, что натриевые каналы к этому времени практически реактивированы, а разность потенциалов близка к уровню Екр. В этот период за короткое мгновение до завершения на мембране предыдущего возбуждения действие даже подпороговых стимулов может вызвать новый процесс возбуждения мембраны (период супернормальной возбудимости).Период повышенной возбудимости кардиологи называют «периодом уязвимости» сердца, так как при поступлении в это время к миокарду внеочередных потенциалов действия возникает повышенная опасность возникновения аритмии, или фибрилляции, желудочков.

Проводимость сердца

Отличается от проводимости скелетной мышцы тем, что в сердце возбуждение может передаваться от одного кардиомиоцита на другие. Таким образом, возникнув в одном участке миокарда, возбуждение может распространяться на его другие участки.

Кардиомиоциты имеют отростчатую форму и контактируют с соседними клетками через нексусы — область плотных контактов между миоцитами, в мембранах которых имеются общие для контактирующих клеток каналы. Каналы сформированы шестью молекулами белков коннексонов и имеют низ- кос сопротивление электрическому току. Они обеспечивают передачу возбуждения с одного кардиомиоцита на другой за счет перехода между клетками ионов и переноса ими электрических зарядов. В частности, через нексусы кардиомиоциты обмениваются ионами Ca2+, принимающими участие в передаче возбуждения и сокращения, и другими биологически активными веществами. После того как возбуждение распространилось с одного кардиомиоцита на другой через область вставочных дисков, оно распространяется далее по мембране кардиомиоцитов, благодаря наличию в них потенциалзависимых натриевых, кальциевых, калиевых и других ионных каналов. Скорость проведения возбуждения по миокарду может достигать 1 м/с.

В составе нексусов имеются десмосомы — области прочного механического прикрепления клеток друг к другу. Благодаря наличию непосредственной электрической и механической связи между кардиомиоцитами их возбуждение и сокращение оказываются синхронизированными, а способность миокарда проводить возбуждение и отвечать на него целостной сократительной реакцией получила название функционального синтиция. Поскольку кардиомиоциты способны проводить возбуждение от клетки к клетке, то нет необходимости проведения потенциала действия к каждой клетке волокнами проводящей системы сердца. Между ними и сократительными кардиомиоцитами отсутствуют синапсы.

Таким образом, потенциал действия поступает ко многим точкам миокарда с ветвящихся волокон Пуркинье, где он вызывает возбуждение сократительных кардиомиоцитов, расположенных субэндокардиально. Возникшие в них потенциалы действия распространяются на соседние участки миокарда в направлении от эндокарда к эпикарду. Возникновение возбуждения во многих точках миокарда и его распространение по сердечной мышце с высокой скоростью являются важнейшими условиями синхронизации возбуждения и сокращения не только на уровне отдельных миоцитов, но и в различных участках миокарда. Нарушение распространения возбуждения по миокарду, десинхронизация его сокращения могут быть одной из причин снижения насосной функции сердца.


Смежные предметы
Физиология сердца
Сердечная мышца человека, её свойства и особенности
Возбудимость и проводимость сердца
Сократимость миокарда
Сердечный цикл, его фазы. Систола и диастола предсердий желудочков
Электрокардиография: элементы ЭКГ и принципы анализа сердца
Аритмия и другие нарушения ритма сердца
Показатели работы сердца. Ударный и минутный объем сердца
Сосуды кровеносной системы человека, их виды и строение
Капилляры человека. Скорость движения крови в капиллярах
Кровоснабжение головного мозга, сердца, легких и печени
Большой и малый круги кровообращения. Скорость кровотока
Проводящая система сердца. Структура сердца
Артериальное давление. Систолическое и диастолическое давление крови
Артериальный пульс. Пульсовая волна, её скорость
Регуляция кровообращения и артериального давления
Автоматия сердца
Регуляция работы сердца: нервная и гуморальная