Строение и типы нервных волокон

Нервные волокна представляют собой отростки нервных клеток, среди которых выделяют дендриты и аксоны. Одними из важнейших функций этих волокон являются восприятие сигналов внешней и внутренней среды, их преобразование в нервные импульсы и проведение последних но дендритам в ЦНС или по аксонам из ЦНС к эффекторным клеткам.

Нервные волокна (отростки нервных клеток) осуществляют проведение нервных импульсов. Нервные волокна подразделяются на миелиновые (покрытые миелиновой оболочкой) и безмиелиновые. Миелиновые волокна преобладают в двигательных нервах, а безмиелиновые — в вегетативной нервной системе.

Строение волокон

Нервное волокно состоит из осевого цилиндра и покрывающей его миелиновой оболочки, прерывающейся через определенные промежутки (перехваты Ранвье). Миелиновая оболочка образуется в результате того, что леммоцит (шванновская клетка) многократно обертывает осевой цилиндр, образуя плотный липидный слой. Такие волокна называются миелиновыми, или мякотными. Нервные волокна, не имеющие миелиновой оболочки, называются безмиелиновыми, или безмякотными. Осевой цилиндр имеет плазматическую мембрану и аксоплазму.

Из нервных волокон формируются нервы или нервные стволы, заключенные в общую соединительнотканную оболочку. В состав нерва входят как миелиновые, так и безмиелиновые волокна.

Рис. Схема строения нервных волокон

В зависимости от функции и направления проведения нервных импульсов волокна делят на афферентные, проводящие сигналы в ЦНС, и эфферентные, проводящие их из ЦНС к исполнительным органам. Нервные волокна формируют нервы и многочисленные пути проведения сигналов внутри самой нервной системы.

Типы нервных волокон

Нервные волокна по их диаметру и скорости проведения возбуждения принято подразделять на три типа: А, В, С. Волокна типа А в свою очередь делятся на подтипы: А-α, А-β, А-γ, А-δ.

Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые среди них (А-а) имеют диаметр 12-22 мкм и обладают наибольшей скоростью проведения возбуждения — 70-120 м/с. По этим волокнам возбуждение проводится от моторных нервных центров спинного мозга к скелетным мышцам и от рецепторов мышц к соответствующим нервным центрам. Другие волокна типа А имеют меньший диаметр и меньшую скорость проведения возбуждения (от 5 до 70 м/с). Они относятся преимущественно к чувствительным волокнам, проводящим возбуждение от различных рецепторов (тактильных, температурных и др.) в ЦНС.

К волокнам типа В относятся миелиновые преганглионарные волокна вегетативной нервной системы. Их диаметр составляет 1-3,5 мкм, а скорость проведения возбуждения — 3-18 м/с.

К волокнам типа С относятся тонкие (диаметр 0,5-2 мкм) безмиелиновые нервные волокна. Скорость проведения возбуждения по ним составляет 0,5-3,0 м/с. Волокна этого типа входят в состав постганглионарных волокон вегетативной нервной системы. Эти волокна также проводят возбуждение от терморецепторов и болевых рецепторов.

Проведение возбуждения по нервным волокнам

Особенности проведения возбуждения в нервных волокнах зависят от их строения и свойств. По этим признакам нервные волокна делят на группы А, В и С. Волокна групп А и В представлены миелинизированными волокнами. Они покрыты миелиновой оболочкой, которая образуется плотно прилежащими мембранами глиальных клеток, многократно обернутыми вокруг осевого цилиндра нервного волокна. В ЦНС миелиновую оболочку формируют олигодендроциты, а миелин периферических нервов образован шванновскими клетками.

Миелин представляет собой многослойную мембрану, состоящую из фосфолипидов, холестерола, основного белка миелина и небольшого количества других веществ. Миелиновая оболочка через примерно равные участки (0,5-2 мм) прерывается, и мембрана нервного волокна остается непокрытой миелином. Эти участки называются перехватами Ранвье. В мембране нервного волокна в области перехватов имеется высокая плотность потенциалзависимых натриевых и калиевых каналов. Длина перехватов составляет 0,3-14 мкм. Чем больше диаметр миелинизированного волокна, тем более длинные его участки покрыты миелином и тем меньшее число перехватов Ранвье имеется на единицу длины такого волокна.

Волокна группы А делят на 4 подгруппы: а, β, у, δ (табл. 1).

Таблица 1. Свойства различных нервных волокон теплокровных

Тип волокон

Диаметр волокна, мкм

Скорость прове-дения, м/с

Функция

Длитель-ность пика потенциала действия, мс

Длитель-ность следовой деполя-ризации, мс

Длитель-ность следовой гиперпо-ляризации, мс

Аа

12-22

70-120

Проприоцепция функция

Моторные волокна скелетных мышц, афферентные волокна от мышечных рецепторов

0,4-0,5

15-20

40-60

Аβ

8-12

40-70

Тактильная функция

Афферентные волокна от рецепторов прикосновения

0,4-0,6

-

-

Ау

4-8

15-40

Двигательная функция

Афферентные волокна от рецепторов прикосновения и давления, афферентные волокна к мышечным веретенам

0,5-0,7

-

-

Аδ

1-4

5-15

Болевая, температурная и тактильная функции

Афферентные волокна от некоторых рецепторов тепла, давления, боли

0,6-1,0

-

-

В

1-3,5

3-18

Преганглионарные вегетативные волокна

1-2

Отсутст-вует

100-300

С

0,5-2,0

0,5-3

Симпатическая функция

Постганглионарные вегетативные волокна, афферентные волокна от некоторых рецепторов тепла, давления, боли

2,0

50-80

300-1000

Волокна Аа — самые большие по диаметру (12-20 мкм) — имеют скорость проведения возбуждения 70-120 м/с. Они выполняют функции афферентных волокон, проводящих возбуждение от тактильных рецепторов кожи, рецепторов мышц и сухожилий, а также являются эфферентными волокнами, передающими возбуждение от спинальных а-мотонейронов к экстрафузальным сократительным волокнам скелетных мышц. Передаваемая по ним информация необходима для осуществления быстрых рефлекторных и произвольных движений. Нервные волокна Ау проводят возбуждение от спинальных у-мотонейронов к сократительным клеткам мышечных веретен. Имея диаметр 3-6 мкм, Ay-волокна проводят возбуждение со скоростью 15-30 м/с. Информация, передаваемая по этим волокнам, используется не непосредственно для инициирования движений, а скорее для их координации.

Из табл. 1 видно, что толстые миелинизированные волокна используются в тех сенсорных и моторных нервах, с помощью которых информация должна передаваться наиболее быстро для осуществления срочных реакций.

Процессы, контролируемые автономной нервной системой, осуществляются с более низкими скоростями, чем двигательные реакции скелетной мускулатуры. Информация, необходимая для их осуществления, воспринимается сенсорными рецепторами и передается в ЦНС по самым тонким афферентным миелинизированным Аδ-, В- и немиелинизированным С- волокнам. Эфферентные волокна типа В и С входят в состав нервов автономной нервной системы.

Механизм проведения возбуждения по нервным волокнам

К настоящему времени доказано, что проведение возбуждения по миелиновым и безмиелиновым нервным волокнам осуществляется на основе ионных механизмов генерации потенциала действия. Но механизм проведения возбуждения по волокнам обоих типов имеет определенные особенности.

Так, при распространении возбуждения по безмиелиновому нервному волокну местные токи, которые возникают между его возбужденным и невозбужденным участками, вызывают деполяризацию мембраны и генерацию потенциала действия. Затем локальные токи возникают уже между возбужденным участком мембраны и ближайшим невозбужденным участком. Многократное повторение этого процесса способствует распространению возбуждения вдоль нервного волокна. Так как в процесс возбуждения последовательно вовлекаются все участки мембраны волокна, то такой механизм проведения возбуждения называется непрерывным. Непрерывное проведение потенциала действия происходит в мышечных волокнах и в безмиелиновых нервных волокнах типа С.

Наличие у миелиновых нервных волокон участков без этой миелиновой оболочки (перехваты Ранвье), обусловливает специфический тип проведения возбуждения. В этих волокнах местные электрические токи возникают между соседними перехватами Ранвье, разделенными участком волокна с миелиновой оболочкой. И возбуждение «перепрыгивает» через участки, покрытые миелиновой оболочкой, от одного перехвата к другому. Такой механизм распространения возбуждения называется сальтаторным (скачкообразным), или прерывистым. Скорость сальтаторного проведения возбуждения гораздо выше, чем в безмиелиновых волокнах, так как в процесс возбуждения вовлекается не вся мембрана, а только ее небольшие участки в области перехватов.

«Перепрыгивание» потенциала действия через миелиновый участок возможно потому, что его амплитуда в 5-6 раз превышает величину, необходимую для возбуждения соседнего перехвата Ранвье. Иногда потенциал действия способен «перепрыгивать» даже через несколько межперехватных промежутков.

Транспортная функция нервных волокон

Осуществление мембраной нервных волокон одной из их главных функций — проведения нервных импульсов — неразрывно связано с трансформацией электрических потенциалов в высвобождение из нервных окончаний сигнальных молекул — нейромедиаторов. Во многих случаях их синтез осуществляется в ядре тела нервной клетки, и аксоны нервной клетки, которые могут достигать длины 1 м, доставляют нейромедиаторы в нервные окончания посредством особых транспортных механизмов, получивших название аксонного транспорта веществ. С их помощью по нервным волокнам перемещаются не только нейромедиаторы, но и ферменты, пластические и другие вещества, необходимые для роста, поддержания структуры и функции нервных волокон, синапсов и постсинаптических клеток.

Аксонный транспорт подразделяют на быстрый и медленный.

Быстрый аксонный транспорт обеспечивает перемещение медиаторов, некоторых внутриклеточных органелл, ферментов в направлении от тела нейрона к пресинаптическим терминалям аксона. Такой транспорт называют антеградным. Он осуществляется с участием белка актина, ионов Са2+ и проходящих вдоль аксона микротрубочек и микронитей. Его скорость составляет 25-40 см/сут. На транспорт затрачивается энергия клеточного метаболизма.

Медленный аксонный транспорт происходит со скоростью 1-2 мм/сут в направлении от тела нейрона к нервным окончаниям. Медленный антеградный транспорт представляет собой движение аксоплазмы вместе с содержащимися в ней органеллами, РНК, белками и биологически активными веществами от тела нейрона к его окончаниям. От скорости их перемещения зависит скорость роста аксона, когда он восстанавливает свою длину (регенерирует) после повреждения.

Выделяют также ретроградный аксонный транспорт в направлении от нервного окончания к телу нейрона. С помощью этого вида транспорта к телу нейрона перемещаются фермент ацетилхолинэстераза, фрагменты разрушенных органелл, некоторые биологические вещества, регулирующие синтез белка в нейроне. Скорость транспорта достигает 30 см/сут. Учет наличия ретроградного транспорта важен и потому, что с его помощью в нервную систему могут проникать болезнетворные агенты: вирусы полиомиелита, герпеса, бешенства, столбнячный токсин.

Аксонный транспорт необходим для поддержания нормальной структуры и функции нервных волокон, доставки энергетических веществ, медиаторов и нейропептидов в пресинаптические терминали. Он важен для оказания трофического влияния на иннервируемые ткани и для восстановления поврежденных нервных волокон. Если нервное волокно пересечено, то его периферический участок, лишенный возможности обмениваться с помощью аксонного транспорта различными веществами с телом нервной клетки, дегенерирует. Центральный участок нервного волокна, сохранивший связь с телом нервной клетки, регенерирует.

Проведение нервного импульса

Проведение нервных импульсов является специализированной функцией нервных волокон, т.е. отростков нервных клеток.

Нервные волокна разделяют на мякотные, миелинизированные, и безмякотные, или немиелинизированные. Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.

Структура нервного волокна

Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем их соотношение в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80-95%. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.

Как показали электронно-микроскопические исследования, миелиновая оболочка создается в результате того, что миелоцит (шванновская клетка) многократно обертывает осевой цилиндр (рис. 1), слои ее сливаются, образуя плотный жировой футляр — миелиновую оболочку. Миелиновая оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов Ранвье.

Рис. 1. Роль миелоцита (шванновской клетки) в образовании миелиновой оболочки в мякотных нервных волокнах: последовательные стадии спиралеобразного закручивания миелоцита вокруг аксона (I); взаимное расположение миелоцитов и аксонов в безмякотных нервных волокнах (II)

Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах диаметром 10-20 мкм длина промежутка между перехватами составляет 1-2 мм. В наиболее тонких волокнах (диаметром 1-2 мкм) эти участки имеют длину около 0,2 мм.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друг только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякотное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон.

Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофическую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякот- ных нервных волокнах возможно не на всем протяжении осевого цилиндра, а только в ограниченных участках — перехватах Ранвье. Это имеет важное значение для распространения нервного импульса вдоль волокна.

Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.

Проведение возбуждения в немиелинизированных и миелинизированных нервных волокнах

В безмякотных нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны, от одного возбужденного участка к другому, расположенному рядом. В отличие от этого в миелинизированных волокнах потенциал действия может распространяться только скачкообразно, «перепрыгивая» через участки волокна, покрытые изолирующей миелиновой оболочкой. Такое проведение называется сальтаторным.

Прямые электрофизиологические исследования, проведенные Каго (1924), а затем Тасаки (1953) на одиночных миелинизированных нервных волокнах лягушки, показали, что потенциалы действия в этих волокнах возни кают только в перехватах, а участки между перехватами, покрытые миелином, являются практически невозбудимыми.

Плотность натриевых каналов в перехватах очень велика: на 1 мкм2 мембраны насчитывается около 10 000 натриевых каналов, что в 200 раз превышает плотность их в мембране гигантского аксона кальмара. Высокая плотность натриевых каналов является важнейшим условием сальтаторного проведения возбуждения. На рис. 2 показано, каким образом происходит «перепрыгивание» нервного импульса с одного перехвата на другой.

В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. Разности потенциалов между соседними перехватами не существует. В момент возбуждения поверхность мембраны перехвата С становится заряженной электроотрицательно по отношению к поверхности мембраны соседнего перехвата D. Это приводит к возникновению местного (локального) электрического тока, который идет через окружающую волокно межтканевую жидкость, мембрану и аксоплазму в направлении, показанном на рисунке стрелкой. Выходящий через перехват D ток возбуждает его, вызывая перезарядку мембраны. В перехвате С возбуждение еще продолжается, и он на время становится рефрактерным. Поэтому перехват D способен привести в состояние возбуждения только следующий перехват и т.д.

«Перепрыгивание» потенциала действия через межперехватный участок оказывается возможным только потому, что амплитуда потенциала действия в каждом перехвате в 5-6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. При определенных условиях потенциал действия может «перепрыгнуть» не только через один, но и через два межперехватных участка — в частности, в том случае, если возбудимость соседнего перехвата снижена каким-либо фармакологическим агентом, например новокаином, кокаином и др.

Рис. 2. Сальтаторное распространение возбуждения в мякотном нервном волокне от перехвата к перехвату: А — немиелинизированное волокно; В — миелинизированное волокно. Стрелками показано направление тока

Предположение о скачкообразном распространении возбуждения в нервных волокнах впервые было высказано Б.Ф. Вериго (1899). Такой способ проведения имеет ряд преимуществ по сравнению с непрерывным проведением в безмякотных волокнах: во-первых, «перепрыгивая» через сравнительно большие участки волокна, возбуждение может распространяться со значительно большей скоростью, чем при непрерывном проведении по безмякотному волокну того же диаметра; во-вторых скачкообразное распространение является энергетически более экономным, поскольку в состояние активности приходит не вся мембрана, а только ее небольшие участки в области перехватов, имеющие ширину менее 1 мкм. Потери ионов (в расчете на единицу длины волокна), сопровождающие возникновение потенциала действия в таких ограниченных участках мембраны, очень невелики, а следовательно, малы и энергетические затраты на работу натрий-калиевого насоса, необходимые для восстановления измененных ионных соотношений между внутренним содержимым нервного волокна и тканевой жидкостью.

Законы проведения возбуждения в нервах

При изучении проведения возбуждения по нерву было установлено несколько необходимых условий и правил (законов) протекания этого процесса.

Анатомическая и физиологическая непрерывность волокна. Обязательным условием для проведения возбуждения является морфологическая и функциональная целостность мембраны. Любое сильное воздействие на волокно — наложение лигатуры, сдавливание, растяжение, действие различных химических агентов, чрезмерное действие холода или тепла — вызывает его повреждение и прекращение проведения возбуждения.

Двустороннее проведение возбуждения. По нервным волокнам возбуждение проводится как в афферентном, так и в эфферентном направлении. Эта особенность нервных волокон была доказана опытами А.И. Бабухина (1847) на электрическом органе нильского сома. Электрический орган сома состоит из отдельных пластин, иннервируемых веточками одного аксона. А.И. Бабухин удалил средние пластины, чтобы избежать проведения возбуждения по электрическому органу, и перерезал одну из веточек нерва. Раздражая центральный конец перерезанного нерва, он наблюдал ответную реакцию во всех сегментах электрического органа. Следовательно, возбуждение по нервным волокнам проходило в разных направлениях — центростремительном и центробежном.

Двустороннее проведение является не только лабораторным феноменом. В естественных условиях потенциал действия нервной клетки возникает в той ее части, где тело переходит в ее отросток — аксон (так называемый начальный сегмент). Из начального сегмента потенциал действия распространяется двусторонне: в аксоне по направлению к нервным окончаниям и в тело клетки по направлению к ее дендритам.

Изолированное проведение. В периферическом нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Это связано с особенностями миелиновой оболочки. Обладая большим сопротивлением, она является изолятором, препятствующим распространению возбуждения на соседние волокна. Это имеет очень важное значение в связи с тем, что всякий периферический нервный ствол содержит большое число нервных волокон — двигательных, чувствительных и вегетативных, которые иннервируют разные, иногда далеко отстоящие друг от друга и разнородные по структуре и функциям клетки и ткани. Например, блуждающий нерв иннервирует все органы грудной полости и значительную часть органов брюшной полости, седалищный нерв — всю мускулатуру, костный аппарат, сосуды и кожу нижней конечности. Если бы возбуждение переходило внутри нервного ствола с одного волокна на другое, то в этом случае нормальное изолированное функционирование периферических органов и тканей было бы невозможно.

Перерождение нервных волокон после перерезки нерва. Нервные волокна не могут существовать вне связи с телом нервной клетки: перерезка нерва ведет к гибели тех волокон, которые оказались отделенными от тела клеток. У теплокровных животных уже через двое-трое суток после перерезки нерва его периферический отросток утрачивает способность к проведению нервных импульсов. Вслед за этим начинается дегенерация нервных волокон, причем миелиновая оболочка претерпевает жировое перерождение: мякотная оболочка теряет миелин, который скапливается в виде капель; распавшиеся волокна и их миелин рассасываются и на месте нервных волокон остаются тяжи, образованные леммоцитом (шванновской клеткой). Все эти изменения впервые были описаны английским врачом Валлером и названы по его имени валлеровским перерождением.

Регенерация нерва происходит очень медленно. Леммоциты, оставшиеся на месте дегенерировавших нервных волокон, начинают разрастаться вблизи места перерезки по направлению к центральному отрезку нерва. Одновременно перерезанные концы аксонов центрального отрезка образуют так называемые колбы роста — утолщения, которые растут в направлении периферического отрезка. Часть этих веточек попадает в старое ложе перерезанного нерва и продолжает расти в этом ложе со скоростью 0,5-4,5 мм в сутки, до тех пор пока не дойдет до соответствующей периферической ткани или органа, где волокна образуют нервные окончания. С этого времени восстанавливается нормальная иннервация органа или ткани.

В различных органах восстановление функции после перерезки нерва наступает в разные сроки. В мышцах первые признаки восстановления функций могут появиться через пять-шесть недель; окончательное восстановление происходит гораздо позднее, иногда через год.

Свойства нервного волокна

Нервное волокно обладает определенными физиологическими свойствами: возбудимостью, проводимостью и лабильностью.

Нервное волокно характеризуется очень низкой утомляемостью. Это обусловлено тем, что при проведении одного потенциала действия по нервному волокну затрачивается очень малое количество АТФ для восстановления ионных градиентов.

Лабильность и парабиоз нервных волокон

Нервные волокна обладают лабильностью. Лабильность (неустойчивость) — это способность нервного волокна воспроизводить определенное число циклов возбуждения в единицу времени. Мерой лабильности нервного волокна служит максимальное число циклов возбуждения, которое оно способно воспроизвести в единицу времени без изменения ритма раздражения. Нервное волокно способно воспроизводить до 1000 импульсов в секунду.

Академик Н.Е. Введенский обнаружил, что при воздействии на нервный участок повреждающего агента (альтерация), например химического вещества, лабильность этого участка понижается. Это обусловлено блокадой натриевой и калиевой проницаемости мембраны. Такое состояние пониженной лабильности Н.Е. Введенский назвал парабиозом. Парабиоз подразделяется на три последовательные фазы: уравнительную, парадоксальную и тормозную.

В уравнительную фазу устанавливается одинаковая величина ответной реакции на действие сильных и слабых раздражителей. В нормальных условиях величина ответной реакции иннервируемых этим нервом мышечных волокон подчиняется закону силы: на слабые раздражители ответная реакция меньше, а на сильные раздражители — больше.

Парадоксальная фаза характеризуется тем, что на слабые раздражители отмечается реакция большей величины, чем на сильные.

В тормозную фазу лабильность волокна понижается до такой степени, что раздражители любой силы не способны вызвать ответной реакции. При этом мембрана волокна находится в состоянии длительной деполяризации.

Парабиоз носит обратимый характер. В случае кратковременного воздействия на нерв повреждающего вещества, после прекращения его действия нерв выходит из состояния парабиоза и проходит аналогичные фазы, но в обратной последовательности.

Утомление нерва

Неутомляемость нерва была впервые показана Н.Е. Введенским (1883), который наблюдал сохранение работоспособности нерва после непрерывного 8-часового раздражения. Введенский проводил опыт на двух нервно-мышечных препаратах лапок лягушки. Оба нерва в течение длительного времени раздражались ритмическим индукционным током одинаковой силы. Но на одном из нервов, ближе к мышце, дополнительно устанавливались электроды постоянного тока, с помощью которых блокировалось проведение возбуждения к мышцам. Таким образом, раздражались оба нерва в течение 8 ч, но возбуждение проходило только к мышцам одной лапки. После 8-часового раздражения, когда мышцы работающего препарата перестали сокращаться, был снят блок с нерва другого препарата. При этом возникло сокращение его мышц в ответ на раздражение нерва. Следовательно, нерв, проводящий возбуждение к блокированной лапке, не утомился, несмотря на длительное раздражение.

Тонкие волокна быстрее утомляются по сравнению с толстыми. Относительная неутомляемость нервного волокна связана прежде всего с уровнем обмена веществ. Поскольку нервные волокна во время деятельности возбуждены только в перехватах Ранвье (что составляет относительно малую поверхность), количество расходуемой энергии невелико. Поэтому процессы ресинтеза легко покрывают эти расходы, даже если возбуждение длится несколько часов. Кроме того, в естественных условиях функционирования организма нерв не утомляется и в связи с тем, что несет нагрузку меньше своих возможностей.

Из всех звеньев рефлекторной дуги нерв обладает самой высокой лабильностью. Между тем в целом организме частота импульсов, идущих по эфферентному нерву, определяется лабильностью нервных центров, которая невелика. Поэтому нерв проводит меньшее число импульсов в единицу времени, чем он мог бы воспроизводить. Это обеспечивает его относительную неутомляемость.


Смежные предметы