www.Grandars.ru » Медицина » Физиология »

Гистогематический и гематоэнцефалический барьеры мозга

Гистогематические барьеры

Гистогематический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и органами.

Гистогематические барьеры участвуют в поддержании гомеостаза организма и отдельных органов. Благодаря наличию гистогематических барьеров каждый орган живет в своей особой среде, которая может значительно отличаться от плазмы крови по составу отдельных ингредиентов. Особенно мощные барьеры имеются между кровью и мозгом, кровью и тканью половых желез, кровью и влагой камер глаза, кровью матери и плода.

Гистогематические барьеры различных органов имеют как различия, так и ряд общих черт строения. Непосредственный контакт с кровью во всех органах имеет слой барьера, образованный эндотелием кровеносных капилляров. Кроме того, структурами ГГБ являются базальная мембрана (средний слой) и адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы, в чем проявляется их защитная функция.

Важнейшие механизмы, обеспечивающие функционирование гистогематических барьеров, далее рассматриваются на примере гематоэнцефалического барьера, наличие и свойства которого врачу особенно часто приходится учитывать при применении лекарственных препаратов и различных воздействий на организм.

Гематоэнцефалический барьер

Гематоэнцефалический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и тканью мозга.

Морфологической основой гематоэнцефалического барьера являются эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, астроциты нейроглии, охватывающие своими ножками всю поверхность капилляров. В перемещении веществ через гематоэнцефалический барьер участвуют транспортные системы эндотелия капиллярных стенок, включающие везикулярный транспорт веществ (пино- и экзоцитоз), транспорт через каналы с участием или без участия белков-переносчиков, ферментные системы, модифицирующие или разрушающие поступающие вещества. Уже упоминалось, что в нервной ткани функционируют специализированные транспортные системы воды, использующие белки-аквапорины AQP1 и AQP4. Последние формируют водные каналы, регулирующие образование цереброспинальной жидкости и обмен воды между кровью и тканью мозга.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые «плотные контакты».

Гематоэнцефалический барьер выполняет для мозга защитную и регулирующую функции. Он защищает мозг от действия ряда веществ, образующихся в других тканях, чужеродных и токсичных веществ, участвует в транспорте веществ из крови в мозг и является важнейшим участником механизмов гомеостаза межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества, например катехоламины, практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками гипоталамуса, где проницаемость гематоэнцефалического барьера для многих веществ высокая. В этих областях обнаружены пронизывающие эндотелий каналы и межэндотелиальные щели, по которым идет проникновение веществ из крови во внеклеточную жидкость мозговой ткани или в сами нейроны. Высокая проницаемость гематоэнцефалического барьера в этих областях позволяет биологически активным веществам (цитокинам, гормонам) достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования гематоэнцефалического барьера является возможность изменения его проницаемости для ряда веществ в различных условиях. Тем самым гематоэнцефалический барьер способен, регулируя проницаемость, изменять взаимоотношения между кровью и мозгом. Регуляция осуществляется за счет изменения числа открытых капилляров, скорости кровотока, изменения проницаемости клеточных мембран, состояния межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза. Проницаемость ГЭБ может существенно нарушаться в условиях ишемии мозговой ткани, инфицирования, развития воспалительных процессов в нервной системе, ее травматическом повреждении.

Считается, что гематоэнцефалический барьер, создавая значительное препятствие для проникновения многих веществ из крови в мозг, вместе с тем хорошо пропускает такие же вещества, образовавшиеся в мозге, в обратном направлении — из мозга в кровь.

Проницаемость гематоэнцефалического барьерадля различных веществ сильно отличается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые. Легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.)

Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Углеводы узнаются и транспортируются специальными переносчиками GLUT1 и GLUT3. Эта транспортная система настолько специфична, что различает стереоизомеры D- и L-глюкозы: D-глюкоза транспортируется, а L-глюкоза — нет. Транспорт глюкозы в ткань мозга нечувствителен к инсулину, но подавляется цитохалазином В.

Переносчики участвуют в транспорте нейтральных аминокислот (например, фенилаланина). Для переноса ряда веществ используются механизмы активного транспорта. Например, за счет активного транспорта против градиентов концентрации переносятся ионы Na+, К+ , аминокислота глицин, выполняющая функцию тормозного медиатора.

Таким образом, перенос веществ с использованием различных механизмов осуществляется не только через плазматические мембраны, но и через структуры биологических барьеров. Изучение этих механизмов необходимо для понимания сути регуляторных процессов в организме.


Смежные предметы